Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Peter E. Keller
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2020) 32 (12): 2260–2271.
Published: 01 December 2020
FIGURES
| View All (5)
Abstract
View article
PDF
Human rhythmic movements spontaneously synchronize with auditory rhythms at various frequency ratios. The emergence of more complex relationships—for instance, frequency ratios of 1:2 and 1:3—is enhanced by adding a congruent accentuation pattern (binary for 1:2 and ternary for 1:3), resulting in a 1:1 movement–accentuation relationship. However, this benefit of accentuation on movement synchronization appears to be stronger for the ternary pattern than for the binary pattern. Here, we investigated whether this difference in accent-induced movement synchronization may be related to a difference in the neural tracking of these accentuation profiles. Accented and control unaccented auditory sequences were presented to participants who concurrently produced finger taps at their preferred frequency, and spontaneous movement synchronization was measured. EEG was recorded during passive listening to each auditory sequence. The results revealed that enhanced movement synchronization with ternary accentuation was accompanied by enhanced neural tracking of this pattern. Larger EEG responses at the accentuation frequency were found for the ternary pattern compared with the binary pattern. Moreover, the amplitude of accent-induced EEG responses was positively correlated with the magnitude of accent-induced movement synchronization across participants. Altogether, these findings show that the dynamics of spontaneous auditory–motor synchronization is strongly driven by the multi-time-scale sensory processing of auditory rhythms, highlighting the importance of considering neural responses to rhythmic sequences for understanding and enhancing synchronization performance.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2016) 28 (1): 41–54.
Published: 01 January 2016
FIGURES
| View All (4)
Abstract
View article
PDF
Complex human behavior is hierarchically organized. Whether or not syntax plays a role in this organization is currently under debate. The present ERP study uses piano performance to isolate syntactic operations in action planning and to demonstrate their priority over nonsyntactic levels of movement selection. Expert pianists were asked to execute chord progressions on a mute keyboard by copying the posture of a performing model hand shown in sequences of photos. We manipulated the final chord of each sequence in terms of Syntax (congruent/incongruent keys) and Manner (conventional/unconventional fingering), as well as the strength of its predictability by varying the length of the Context (five-chord/two-chord progressions). The production of syntactically incongruent compared to congruent chords showed a response delay that was larger in the long compared to the short context. This behavioral effect was accompanied by a centroparietal negativity in the long but not in the short context, suggesting that a syntax-based motor plan was prepared ahead. Conversely, the execution of the unconventional manner was not delayed as a function of Context and elicited an opposite electrophysiological pattern (a posterior positivity). The current data support the hypothesis that motor plans operate at the level of musical syntax and are incrementally translated to lower levels of movement selection.