Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-20 of 40
Peter Hagoort
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience 1–44.
Published: 18 October 2024
Abstract
View article
PDF
Prosody underpins various linguistic domains ranging from semantics and syntax to discourse. For instance, prosodic information in the form of lexical stress modifies meanings and, as such, syntactic contexts of words as in Turkish kaz-má “pickaxe” (noun) versus káz - ma “do not dig” (imperative). Likewise, prosody indicates the focused constituent of an utterance as the noun phrase filling the wh -spot in a dialogue like What did you eat ? I ate −−−− . In the present study, we investigated the relevance of such prosodic variations for discourse comprehension in Turkish. We aimed at answering how lexical stress and prosodic focus mismatches on critical noun phrases—resulting in grammatical anomalies involving both semantics and syntax and discourse-level anomalies, respectively—affect the perceived correctness of an answer to a question in a given context. To that end, 80 native speakers of Turkish, 40 participating in a psychometric experiment and 40 participating in an EEG experiment, were asked to judge the acceptability of prosodic mismatches that occur either separately or concurrently. Psychometric results indicated that lexical stress mismatch led to a lower correctness score than prosodic focus mismatch, and combined mismatch received the lowest score. Consistent with the psychometric data, EEG results revealed an N400 effect to combined mismatch, and this effect was followed by a P600 response to lexical stress mismatch. Conjointly, these results suggest that every source of prosodic information is immediately available and codetermines the interpretation of an utterance; however, semantically and syntactically relevant lexical stress information is assigned more significance by the language comprehension system compared with prosodic focus information.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2024) 36 (2): 225–238.
Published: 01 February 2024
FIGURES
| View All (6)
Abstract
View article
PDF
Words are not processed in isolation; instead, they are commonly embedded in phrases and sentences. The sentential context influences the perception and processing of a word. However, how this is achieved by brain processes and whether predictive mechanisms underlie this process remain a debated topic. Here, we employed an experimental paradigm in which we orthogonalized sentence context constraints and predictive validity, which was defined as the ratio of congruent to incongruent sentence endings within the experiment. While recording electroencephalography, participants read sentences with three levels of sentential context constraints (high, medium, and low). Participants were also separated into two groups that differed in their ratio of valid congruent to incongruent target words that could be predicted from the sentential context. For both groups, we investigated modulations of alpha power before, and N400 amplitude modulations after target word onset. The results reveal that the N400 amplitude gradually decreased with higher context constraints and cloze probability. In contrast, alpha power was not significantly affected by context constraint. Neither the N400 nor alpha power were significantly affected by changes in predictive validity.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2020) 32 (8): 1466–1483.
Published: 01 August 2020
FIGURES
| View All (4)
Abstract
View article
PDF
This neuroimaging study investigated the neural infrastructure of sentence-level language production. We compared brain activation patterns, as measured with BOLD-fMRI, during production of sentences that differed in verb argument structures (intransitives, transitives, ditransitives) and the lexical status of the verb (known verbs or pseudoverbs). The experiment consisted of 30 mini-blocks of six sentences each. Each mini-block started with an example for the type of sentence to be produced in that block. On each trial in the mini-blocks, participants were first given the (pseudo-)verb followed by three geometric shapes to serve as verb arguments in the sentences. Production of sentences with known verbs yielded greater activation compared to sentences with pseudoverbs in the core language network of the left inferior frontal gyrus, the left posterior middle temporal gyrus, and a more posterior middle temporal region extending into the angular gyrus, analogous to effects observed in language comprehension. Increasing the number of verb arguments led to greater activation in an overlapping left posterior middle temporal gyrus/angular gyrus area, particularly for known verbs, as well as in the bilateral precuneus. Thus, producing sentences with more complex structures using existing verbs leads to increased activation in the language network, suggesting some reliance on memory retrieval of stored lexical–syntactic information during sentence production. This study thus provides evidence from sentence-level language production in line with functional models of the language network that have so far been mainly based on single-word production, comprehension, and language processing in aphasia.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2020) 32 (8): 1428–1437.
Published: 01 August 2020
FIGURES
| View All (4)
Abstract
View article
PDF
Recent neuroimaging evidence suggests that the frequency of entrained oscillations in auditory cortices influences the perceived duration of speech segments, impacting word perception [Kösem, A., Bosker, H. R., Takashima, A., Meyer, A., Jensen, O., & Hagoort, P. Neural entrainment determines the words we hear. Current Biology , 28 , 2867–2875, 2018]. We further tested the causal influence of neural entrainment frequency during speech processing, by manipulating entrainment with continuous transcranial alternating current stimulation (tACS) at distinct oscillatory frequencies (3 and 5.5 Hz) above the auditory cortices. Dutch participants listened to speech and were asked to report their percept of a target Dutch word, which contained a vowel with an ambiguous duration. Target words were presented either in isolation (first experiment) or at the end of spoken sentences (second experiment). We predicted that the tACS frequency would influence neural entrainment and therewith how speech is perceptually sampled, leading to a perceptual overestimation or underestimation of the vowel's duration. Whereas results from Experiment 1 did not confirm this prediction, results from Experiment 2 suggested a small effect of tACS frequency on target word perception: Faster tACS leads to more long-vowel word percepts, in line with the previous neuroimaging findings. Importantly, the difference in word perception induced by the different tACS frequencies was significantly larger in Experiment 1 versus Experiment 2, suggesting that the impact of tACS is dependent on the sensory context. tACS may have a stronger effect on spoken word perception when the words are presented in continuous speech as compared to when they are isolated, potentially because prior (stimulus-induced) entrainment of brain oscillations might be a prerequisite for tACS to be effective.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2020) 32 (7): 1242–1250.
Published: 01 July 2020
FIGURES
Abstract
View article
PDF
Perceiving speech requires the integration of different speech cues, that is, formants. When the speech signal is split so that different cues are presented to the right and left ear (dichotic listening), comprehension requires the integration of binaural information. Based on prior electrophysiological evidence, we hypothesized that the integration of dichotically presented speech cues is enabled by interhemispheric phase synchronization between primary and secondary auditory cortex in the gamma frequency band. We tested this hypothesis by applying transcranial alternating current stimulation (TACS) bilaterally above the superior temporal lobe to induce or disrupt interhemispheric gamma-phase coupling. In contrast to initial predictions, we found that gamma TACS applied in-phase above the two hemispheres (interhemispheric lag 0°) perturbs interhemispheric integration of speech cues, possibly because the applied stimulation perturbs an inherent phase lag between the left and right auditory cortex. We also observed this disruptive effect when applying antiphasic delta TACS (interhemispheric lag 180°). We conclude that interhemispheric phase coupling plays a functional role in interhemispheric speech integration. The direction of this effect may depend on the stimulation frequency.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2018) 30 (8): 1075–1085.
Published: 01 August 2018
FIGURES
Abstract
View article
PDF
Using magnetoencephalography, the current study examined gamma activity associated with language prediction. Participants read high- and low-constraining sentences in which the final word of the sentence was either expected or unexpected. Although no consistent gamma power difference induced by the sentence-final words was found between the expected and unexpected conditions, the correlation of gamma power during the prediction and activation intervals of the sentence-final words was larger when the presented words matched with the prediction compared with when the prediction was violated or when no prediction was available. This suggests that gamma magnitude relates to the match between predicted and perceived words. Moreover, the expected words induced activity with a slower gamma frequency compared with that induced by unexpected words. Overall, the current study establishes that prediction is related to gamma power correlations and a slowing of the gamma frequency.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2018) 30 (3): 432–447.
Published: 01 March 2018
FIGURES
| View All (11)
Abstract
View article
PDF
Readers and listeners actively predict upcoming words during language processing. These predictions might serve to support the unification of incoming words into sentence context and thus rely on interactions between areas in the language network. In the current magnetoencephalography study, participants read sentences that varied in contextual constraints so that the predictability of the sentence-final words was either high or low. Before the sentence-final words, we observed stronger alpha power suppression for the highly compared with low constraining sentences in the left inferior frontal cortex, left posterior temporal region, and visual word form area. Importantly, the temporal and visual word form area alpha power correlated negatively with left frontal gamma power for the highly constraining sentences. We suggest that the correlation between alpha power decrease in temporal language areas and left prefrontal gamma power reflects the initiation of an anticipatory unification process in the language network.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2017) 29 (2): 267–276.
Published: 01 February 2017
FIGURES
Abstract
View article
PDF
Listeners interpret utterances by integrating information from multiple sources including word level semantics and world knowledge. When the semantics of an expression is inconsistent with their knowledge about the world, the listener may have to search through the conceptual space for alternative possible world scenarios that can make the expression more acceptable. Such cognitive exploration requires considerable computational resources and might depend on motivational factors. This study explores whether and how oxytocin, a neuropeptide known to influence social motivation by reducing social anxiety and enhancing affiliative tendencies, can modulate the integration of world knowledge and sentence meanings. The study used a between-participant double-blind randomized placebo-controlled design. Semantic integration, indexed with magnetoencephalography through the N400m marker, was quantified while 45 healthy male participants listened to sentences that were either congruent or incongruent with facts of the world, after receiving intranasally delivered oxytocin or placebo. Compared with congruent sentences, world knowledge incongruent sentences elicited a stronger N400m signal from the left inferior frontal and anterior temporal regions and medial pFC (the N400m effect) in the placebo group. Oxytocin administration significantly attenuated the N400m effect at both sensor and cortical source levels throughout the experiment, in a state-like manner. Additional electrophysiological markers suggest that the absence of the N400m effect in the oxytocin group is unlikely due to the lack of early sensory or semantic processing or a general downregulation of attention. These findings suggest that oxytocin drives listeners to resolve challenges of semantic integration, possibly by promoting the cognitive exploration of alternative possible world scenarios.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2016) 28 (9): 1255–1269.
Published: 01 September 2016
FIGURES
| View All (5)
Abstract
View article
PDF
Communication is facilitated when listeners allocate their attention to important information (focus) in the message, a process called “information structure.” Linguistic cues like the preceding context and pitch accent help listeners to identify focused information. In multimodal communication, relevant information can be emphasized by nonverbal cues like beat gestures, which represent rhythmic nonmeaningful hand movements. Recent studies have found that linguistic and nonverbal attention cues are integrated independently in single sentences. However, it is possible that these two cues interact when information is embedded in context, because context allows listeners to predict what information is important. In an ERP study, we tested this hypothesis and asked listeners to view videos capturing a dialogue. In the critical sentence, focused and nonfocused words were accompanied by beat gestures, grooming hand movements, or no gestures. ERP results showed that focused words are processed more attentively than nonfocused words as reflected in an N1 and P300 component. Hand movements also captured attention and elicited a P300 component. Importantly, beat gesture and focus interacted in a late time window of 600–900 msec relative to target word onset, giving rise to a late positivity when nonfocused words were accompanied by beat gestures. Our results show that listeners integrate beat gesture with the focus of the message and that integration costs arise when beat gesture falls on nonfocused information. This suggests that beat gestures fulfill a unique focusing function in multimodal discourse processing and that they have to be integrated with the information structure of the message.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2015) 27 (12): 2352–2368.
Published: 01 December 2015
FIGURES
| View All (7)
Abstract
View article
PDF
In everyday human communication, we often express our communicative intentions by manually pointing out referents in the material world around us to an addressee, often in tight synchronization with referential speech. This study investigated whether and how the kinematic form of index finger pointing gestures is shaped by the gesturer's communicative intentions and how this is modulated by the presence of concurrently produced speech. Furthermore, we explored the neural mechanisms underpinning the planning of communicative pointing gestures and speech. Two experiments were carried out in which participants pointed at referents for an addressee while the informativeness of their gestures and speech was varied. Kinematic and electrophysiological data were recorded online. It was found that participants prolonged the duration of the stroke and poststroke hold phase of their gesture to be more communicative, in particular when the gesture was carrying the main informational burden in their multimodal utterance. Frontal and P300 effects in the ERPs suggested the importance of intentional and modality-independent attentional mechanisms during the planning phase of informative pointing gestures. These findings contribute to a better understanding of the complex interplay between action, attention, intention, and language in the production of pointing gestures, a communicative act core to human interaction.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2015) 27 (11): 2095–2107.
Published: 01 November 2015
FIGURES
| View All (6)
Abstract
View article
PDF
During sentence level language comprehension, semantic and syntactic unification are functionally distinct operations. Nevertheless, both recruit roughly the same brain areas (spatially overlapping networks in the left frontotemporal cortex) and happen at the same time (in the first few hundred milliseconds after word onset). We tested the hypothesis that semantic and syntactic unification are segregated by means of neuronal synchronization of the functionally relevant networks in different frequency ranges: gamma (40 Hz and up) for semantic unification and lower beta (10–20 Hz) for syntactic unification. EEG power changes were quantified as participants read either correct sentences, syntactically correct though meaningless sentences (syntactic prose), or sentences that did not contain any syntactic structure (random word lists). Other sentences contained either a semantic anomaly or a syntactic violation at a critical word in the sentence. Larger EEG gamma-band power was observed for semantically coherent than for semantically anomalous sentences. Similarly, beta-band power was larger for syntactically correct sentences than for incorrect ones. These results confirm the existence of a functional dissociation in EEG oscillatory dynamics during sentence level language comprehension that is compatible with the notion of a frequency-based segregation of syntactic and semantic unification.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2015) 27 (8): 1528–1541.
Published: 01 August 2015
FIGURES
| View All (5)
Abstract
View article
PDF
This study investigated the brain regions for the comprehension of implied emotion in sentences. Participants read negative sentences without negative words, for example, “ The boy fell asleep and never woke up again, ” and their neutral counterparts “ The boy stood up and grabbed his bag .” This kind of negative sentence allows us to examine implied emotion derived at the sentence level, without associative emotion coming from word retrieval. We found that implied emotion in sentences, relative to neutral sentences, led to activation in some emotion-related areas, including the medial prefrontal cortex, the amygdala, and the insula, as well as certain language-related areas, including the inferior frontal gyrus, which has been implicated in combinatorial processing. These results suggest that the emotional network involved in implied emotion is intricately related to the network for combinatorial processing in language, supporting the view that sentence meaning is more than simply concatenating the meanings of its lexical building blocks.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2015) 27 (1): 175–184.
Published: 01 January 2015
FIGURES
Abstract
View article
PDF
Perception does not function as an isolated module but is tightly linked with other cognitive functions. Several studies have demonstrated an influence of language on motion perception, but it remains debated at which level of processing this modulation takes place. Some studies argue for an interaction in perceptual areas, but it is also possible that the interaction is mediated by “language areas” that integrate linguistic and visual information. Here, we investigated whether language–perception interactions were specific to the language-dominant left hemisphere by comparing the effects of language on visual material presented in the right (RVF) and left visual fields (LVF). Furthermore, we determined the neural locus of the interaction using fMRI. Participants performed a visual motion detection task. On each trial, the visual motion stimulus was presented in either the LVF or in the RVF, preceded by a centrally presented word (e.g., “rise”). The word could be congruent, incongruent, or neutral with regard to the direction of the visual motion stimulus that was presented subsequently. Participants were faster and more accurate when the direction implied by the motion word was congruent with the direction of the visual motion stimulus. Interestingly, the speed benefit was present only for motion stimuli that were presented in the RVF. We observed a neural counterpart of the behavioral facilitation effects in the left middle temporal gyrus, an area involved in semantic processing of verbal material. Together, our results suggest that semantic information about motion retrieved in language regions may automatically modulate perceptual decisions about motion.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2015) 27 (1): 35–45.
Published: 01 January 2015
FIGURES
| View All (4)
Abstract
View article
PDF
In this study, we explore the possibility to predict the semantic category of words from brain signals in a free word generation task. Participants produced single words from different semantic categories in a modified semantic fluency task. A Bayesian logistic regression classifier was trained to predict the semantic category of words from single-trial MEG data. Significant classification accuracies were achieved using sensor-level MEG time series at the time interval of conceptual preparation. Semantic category prediction was also possible using source-reconstructed time series, based on minimum norm estimates of cortical activity. Brain regions that contributed most to classification on the source level were identified. These were the left inferior frontal gyrus, left middle frontal gyrus, and left posterior middle temporal gyrus. Additionally, the temporal dynamics of brain activity underlying the semantic preparation during word generation was explored. These results provide important insights about central aspects of language production.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2013) 25 (10): 1664–1677.
Published: 01 October 2013
FIGURES
Abstract
View article
PDF
The posterior middle temporal gyrus (MTG) and inferior frontal gyrus (IFG) are two critical nodes of the brain's language network. Previous neuroimaging evidence has supported a dissociation in language comprehension in which parts of the MTG are involved in the retrieval of lexical syntactic information and the IFG in unification operations that maintain, select, and integrate multiple sources of information over time. In the present investigation, we tested for causal evidence of this dissociation by modulating activity in IFG and MTG using an offline TMS procedure: continuous theta-burst stimulation. Lexical–syntactic retrieval was manipulated by using sentences with and without a temporarily word-class (noun/verb) ambiguity (e.g., run). In one group of participants, TMS was applied to the IFG and MTG, and in a control group, no TMS was applied. Eye movements were recorded and quantified at two critical sentence regions: a temporarily ambiguous region and a disambiguating region. Results show that stimulation of the IFG led to a modulation of the ambiguity effect (ambiguous–unambiguous) at the disambiguating sentence region in three measures: first fixation durations, total reading times, and regressive eye movements into the region. Both IFG and MTG stimulation modulated the ambiguity effect for total reading times in the temporarily ambiguous sentence region relative to the control group. The current results demonstrate that an offline repetitive TMS protocol can have influences at a different point in time during online processing and provide causal evidence for IFG involvement in unification operations during sentence comprehension.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2012) 24 (11): 2237–2247.
Published: 01 November 2012
FIGURES
Abstract
View article
PDF
Research from the past decade has shown that understanding the meaning of words and utterances (i.e., abstracted symbols) engages the same systems we used to perceive and interact with the physical world in a content-specific manner. For example, understanding the word “grasp” elicits activation in the cortical motor network, that is, part of the neural substrate involved in planned and executing a grasping action. In the embodied literature, cortical motor activation during language comprehension is thought to reflect motor simulation underlying conceptual knowledge [note that outside the embodied framework, other explanations for the link between action and language are offered, e.g., Mahon, B. Z., & Caramazza, A. A critical look at the embodied cognition hypothesis and a new proposal for grouding conceptual content. Journal of Physiology, 102, 59–70, 2008; Hagoort, P. On Broca, brain, and binding: A new framework. Trends in Cognitive Sciences, 9, 416–423, 2005]. Previous research has supported the view that the coupling between language and action is flexible, and reading an action-related word form is not sufficient for cortical motor activation [Van Dam, W. O., van Dijk, M., Bekkering, H., & Rueschemeyer, S.-A. Flexibility in embodied lexical–semantic representations. Human Brain Mapping , doi: 10.1002/hbm.21365, 2011]. The current study goes one step further by addressing the necessity of action-related word forms for motor activation during language comprehension. Subjects listened to indirect requests (IRs) for action during an fMRI session. IRs for action are speech acts in which access to an action concept is required, although it is not explicitly encoded in the language. For example, the utterance “It is hot here!” in a room with a window is likely to be interpreted as a request to open the window. However, the same utterance in a desert will be interpreted as a statement. The results indicate (1) that comprehension of IR sentences activates cortical motor areas reliably more than comprehension of sentences devoid of any implicit motor information. This is true despite the fact that IR sentences contain no lexical reference to action. (2) Comprehension of IR sentences also reliably activates substantial portions of the theory of mind network, known to be involved in making inferences about mental states of others. The implications of these findings for embodied theories of language are discussed.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2011) 23 (8): 1845–1854.
Published: 01 August 2011
FIGURES
Abstract
View article
PDF
During face-to-face communication, one does not only hear speech but also see a speaker's communicative hand movements. It has been shown that such hand gestures play an important role in communication where the two modalities influence each other's interpretation. A gesture typically temporally overlaps with coexpressive speech, but the gesture is often initiated before (but not after) the coexpressive speech. The present ERP study investigated what degree of asynchrony in the speech and gesture onsets are optimal for semantic integration of the concurrent gesture and speech. Videos of a person gesturing were combined with speech segments that were either semantically congruent or incongruent with the gesture. Although gesture and speech always overlapped in time, gesture and speech were presented with three different degrees of asynchrony. In the SOA 0 condition, the gesture onset and the speech onset were simultaneous. In the SOA 160 and 360 conditions, speech was delayed by 160 and 360 msec, respectively. ERPs time locked to speech onset showed a significant difference between semantically congruent versus incongruent gesture–speech combinations on the N400 for the SOA 0 and 160 conditions. No significant difference was found for the SOA 360 condition. These results imply that speech and gesture are integrated most efficiently when the differences in onsets do not exceed a certain time span because of the fact that iconic gestures need speech to be disambiguated in a way relevant to the speech context.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2011) 23 (2): 471–480.
Published: 01 February 2011
FIGURES
| View All (5)
Abstract
View article
PDF
Defeasible inferences are inferences that can be revised in the light of new information. Although defeasible inferences are pervasive in everyday communication, little is known about how and when they are processed by the brain. This study examined the electrophysiological signature of defeasible reasoning using a modified version of the suppression task. Participants were presented with conditional inferences (of the type “if p, then q; p, therefore q”) that were preceded by a congruent or a disabling context. The disabling context contained a possible exception or precondition that prevented people from drawing the conclusion. Acceptability of the conclusion was indeed lower in the disabling condition compared to the congruent condition. Further, we found a large sustained negativity at the conclusion of the disabling condition relative to the congruent condition, which started around 250 msec and was persistent throughout the entire epoch. Possible accounts for the observed effect are discussed.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2010) 22 (10): 2387–2400.
Published: 01 October 2010
FIGURES
| View All (4)
Abstract
View article
PDF
According to embodied theories of language, people understand a verb like throw , at least in part, by mentally simulating throwing . This implicit simulation is often assumed to be similar or identical to motor imagery. Here we used fMRI to test whether implicit simulations of actions during language understanding involve the same cortical motor regions as explicit motor imagery. Healthy participants were presented with verbs related to hand actions (e.g., to throw ) and nonmanual actions (e.g., to kneel ). They either read these verbs (lexical decision task) or actively imagined performing the actions named by the verbs (imagery task). Primary motor cortex showed effector-specific activation during imagery, but not during lexical decision. Parts of premotor cortex distinguished manual from nonmanual actions during both lexical decision and imagery, but there was no overlap or correlation between regions activated during the two tasks. These dissociations suggest that implicit simulation and explicit imagery cued by action verbs may involve different types of motor representations and that the construct of “mental simulation” should be distinguished from “mental imagery” in embodied theories of language.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2010) 22 (9): 2131–2140.
Published: 01 September 2010
FIGURES
Abstract
View article
PDF
Research in psycholinguistics and in the cognitive neuroscience of language has suggested that semantic and syntactic processing are associated with different neurophysiologic correlates, such as the N400 and the P600 in the ERPs. However, only a handful of studies have investigated the neural basis of the syntax–semantics interface, and even fewer experiments have dealt with the cases in which semantic composition can proceed independently of the syntax. Here we looked into one such case—complement coercion—using ERPs. We compared sentences such as, “The journalist wrote the article” with “The journalist began the article.” The second sentence seems to involve a silent semantic element, which is expressed in the first sentence by the head of the verb phrase (VP) “wrote the article.” The second type of construction may therefore require the reader to infer or recover from memory a richer event sense of the VP “began the article,” such as began writing the article, and to integrate that into a semantic representation of the sentence. This operation is referred to as “complement coercion.” Consistently with earlier reading time, eye tracking, and MEG studies, we found traces of such additional computations in the ERPs: Coercion gives rise to a long-lasting negative shift, which differs at least in duration from a standard N400 effect. Issues regarding the nature of the computation involved are discussed in the light of a neurocognitive model of language processing and a formal semantic analysis of coercion.
1