Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-5 of 5
Peter Janssen
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2015) 27 (6): 1104–1115.
Published: 01 June 2015
FIGURES
| View All (6)
Abstract
View article
PDF
The anterior intraparietal area (AIP) of macaques contains neurons that signal the depth structure of disparity-defined 3-D shapes. Previous studies have suggested that AIP's depth information is used for sensorimotor transformations related to the efficient grasping of 3-D objects. We trained monkeys to categorize disparity-defined 3-D shapes and examined whether neuronal activity in AIP may also underlie pure perceptual categorization behavior. We first show that neurons with a similar 3-D shape preference cluster in AIP. We then demonstrate that the monkeys' 3-D shape discrimination performance depends on the position in depth of the stimulus and that this performance difference is reflected in the activity of AIP neurons. We further reveal correlations between the neuronal activity in AIP and the subject's subsequent choices and RTs during 3-D shape categorization. Our findings propose AIP as an important processing stage for 3-D shape perception.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2014) 26 (10): 2342–2355.
Published: 01 October 2014
FIGURES
| View All (8)
Abstract
View article
PDF
Primates use vision to guide their actions in everyday life. Visually guided object grasping is known to rely on a network of cortical areas located in the parietal and premotor cortex. We recorded in the anterior intraparietal area (AIP), an area in the dorsal visual stream that is critical for object grasping and densely connected with the premotor cortex, while monkeys were grasping objects under visual guidance and during passive fixation of videos of grasping actions from the first-person perspective. All AIP neurons in this study responded during grasping execution in the light, that is, became more active after the hand had started to move toward the object and during grasping in the dark. More than half of these AIP neurons responded during the observation of a video of the same grasping actions on a display. Furthermore, these AIP neurons responded as strongly during passive fixation of movements of a hand on a scrambled background and to a lesser extent to a shape appearing within the visual field near the object. Therefore, AIP neurons responding during grasping execution also respond during passive observation of grasping actions and most of them even during passive observation of movements of a simple shape in the visual field.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2014) 26 (8): 1672–1684.
Published: 01 August 2014
FIGURES
| View All (7)
Abstract
View article
PDF
The macaque FEFs and the lateral intraparietal area (LIP) are high-level cortical areas involved in both spatial attention and oculomotor behavior. Stimulating FEF at a level below the threshold for evoking saccades increases fMRI activity and gamma power in area LIP, but the precise effect exerted by the FEF on LIP neurons is unknown. In our study, we recorded LIP single-unit activity during a visually guided saccade task with a peripherally presented go signal during microstimulation of FEF. We found that FEF microstimulation increased the LIP spike rate immediately after the highly salient go signal inside the LIP receptive field when both target and go signal were presented inside the receptive field, and no other possible go cues were present on the screen. The effect of FEF microstimulation on the LIP response was positive until at least 800 msec after microstimulation had ceased, but reversed for longer trial durations. Therefore, FEF microstimulation can modulate the LIP spike rate only when attention is selectively directed toward the stimulated location. These results provide the first direct evidence for LIP spike rate modulations caused by FEF microstimulation, thus showing that FEF activity can be the source of top–down control of area LIP.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2013) 25 (3): 352–364.
Published: 01 March 2013
FIGURES
| View All (7)
Abstract
View article
PDF
Depth information is necessary for adjusting the hand to the three-dimensional (3-D) shape of an object to grasp it. The transformation of visual information into appropriate distal motor commands is critically dependent on the anterior intraparietal area (AIP) and the ventral premotor cortex (area F5), particularly the F5p sector. Recent studies have demonstrated that both AIP and the F5a sector of the ventral premotor cortex contain neurons that respond selectively to disparity-defined 3-D shape. To investigate the neural coding of 3-D shape and the behavioral role of 3-D shape-selective neurons in these two areas, we recorded single-cell activity in AIP and F5a during passive fixation of curved surfaces and during grasping of real-world objects. Similar to those in AIP, F5a neurons were either first- or second-order disparity selective, frequently showed selectivity for discrete approximations of smoothly curved surfaces that contained disparity discontinuities, and exhibited mostly monotonic tuning for the degree of disparity variation. Furthermore, in both areas, 3-D shape-selective neurons were colocalized with neurons that were active during grasping of real-world objects. Thus, area AIP and F5a contain highly similar representations of 3-D shape, which is consistent with the proposed transfer of object information from AIP to the motor system through the ventral premotor cortex.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2012) 24 (6): 1314–1330.
Published: 01 June 2012
FIGURES
| View All (10)
Abstract
View article
PDF
Oscillatory brain activity is attracting increasing interest in cognitive neuroscience. Numerous EEG (magnetoencephalography) and local field potential (LFP) measurements have related cognitive functions to different types of brain oscillations, but the functional significance of these rhythms remains poorly understood. Despite its proven value, LFP activity has not been extensively tested in the macaque lateral intraparietal area (LIP), which has been implicated in a wide variety of cognitive control processes. We recorded action potentials and LFPs in area LIP during delayed eye movement tasks and during a passive fixation task, in which the time schedule was fixed so that temporal expectations about task-relevant cues could be formed. LFP responses in the gamma band discriminated reliably between saccade targets and distractors inside the receptive field (RF). Alpha and beta responses were much less strongly affected by the presence of a saccade target, however, but rose sharply in the waiting period before the go signal. Surprisingly, conditions without visual stimulation of the LIP-RF-evoked robust LFP responses in every frequency band—most prominently in those below 50 Hz—precisely time-locked to the expected time of stimulus onset in the RF. These results indicate that in area LIP, oscillations in the LFP, which reflect synaptic input and local network activity, are tightly coupled to the temporal expectation of task-relevant cues.