Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-2 of 2
Radoslaw Martin Cichy
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Unraveling Representations in Scene-selective Brain Regions Using Scene-Parsing Deep Neural Networks
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2021) 33 (10): 2032–2043.
Published: 01 September 2021
FIGURES
| View All (4)
Abstract
View article
PDF
Visual scene perception is mediated by a set of cortical regions that respond preferentially to images of scenes, including the occipital place area (OPA) and parahippocampal place area (PPA). However, the differential contribution of OPA and PPA to scene perception remains an open research question. In this study, we take a deep neural network (DNN)-based computational approach to investigate the differences in OPA and PPA function. In a first step, we search for a computational model that predicts fMRI responses to scenes in OPA and PPA well. We find that DNNs trained to predict scene components (e.g., wall, ceiling, floor) explain higher variance uniquely in OPA and PPA than a DNN trained to predict scene category (e.g., bathroom, kitchen, office). This result is robust across several DNN architectures. On this basis, we then determine whether particular scene components predicted by DNNs differentially account for unique variance in OPA and PPA. We find that variance in OPA responses uniquely explained by the navigation-related floor component is higher compared to the variance explained by the wall and ceiling components. In contrast, PPA responses are better explained by the combination of wall and floor, that is, scene components that together contain the structure and texture of the scene. This differential sensitivity to scene components suggests differential functions of OPA and PPA in scene processing. Moreover, our results further highlight the potential of the proposed computational approach as a general tool in the investigation of the neural basis of human scene perception.
Journal Articles
Tracking the Spatiotemporal Neural Dynamics of Real-world Object Size and Animacy in the Human Brain
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2018) 30 (11): 1559–1576.
Published: 01 November 2018
FIGURES
| View All (9)
Abstract
View article
PDF
Animacy and real-world size are properties that describe any object and thus bring basic order into our perception of the visual world. Here, we investigated how the human brain processes real-world size and animacy. For this, we applied representational similarity to fMRI and MEG data to yield a view of brain activity with high spatial and temporal resolutions, respectively. Analysis of fMRI data revealed that a distributed and partly overlapping set of cortical regions extending from occipital to ventral and medial temporal cortex represented animacy and real-world size. Within this set, parahippocampal cortex stood out as the region representing animacy and size stronger than most other regions. Further analysis of the detailed representational format revealed differences among regions involved in processing animacy. Analysis of MEG data revealed overlapping temporal dynamics of animacy and real-world size processing starting at around 150 msec and provided the first neuromagnetic signature of real-world object size processing. Finally, to investigate the neural dynamics of size and animacy processing simultaneously in space and time, we combined MEG and fMRI with a novel extension of MEG–fMRI fusion by representational similarity. This analysis revealed partly overlapping and distributed spatiotemporal dynamics, with parahippocampal cortex singled out as a region that represented size and animacy persistently when other regions did not. Furthermore, the analysis highlighted the role of early visual cortex in representing real-world size. A control analysis revealed that the neural dynamics of processing animacy and size were distinct from the neural dynamics of processing low-level visual features. Together, our results provide a detailed spatiotemporal view of animacy and size processing in the human brain.