Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-4 of 4
Rafael Malach
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2008) 20 (7): 1189–1206.
Published: 01 July 2008
Abstract
View article
PDF
Object-related areas in the ventral visual system in humans are known from imaging studies to be preferentially activated by object images compared with noise or texture patterns. It is unknown, however, which features of the object images are extracted and represented in these areas. Here we tested the extent to which the representation of visual classes used object fragments selected by maximizing the information delivered about the class. We tested functional magnetic resonance imaging blood oxygenation level-dependent activation of highly informative object features in low- and high-level visual areas, compared with noninformative object features matched for low-level image properties. Activation in V1 was similar, but in the lateral occipital area and in the posterior fusiform gyrus, activation by “informative” fragments was significantly higher for three object classes. Behavioral studies also revealed high correlation between performance and fragments information. The results show that an objective class-information measure can predict classification performance and activation in human object-related areas.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2005) 17 (7): 1150–1167.
Published: 01 July 2005
Abstract
View article
PDF
Specific regions of the human occipito-temporal cortex are consistently activated in functional imaging studies of face processing. To understand the contribution of these regions to face processing, we examined the pattern of fMRI activation in four congenital prosopagnosic (CP) individuals who are markedly impaired at face processing despite normal vision and intelligence, and with no evidence of brain damage. These individuals evinced a normal pattern of fMRI activation in the fusiform gyrus (FFA) and in other ventral occipito-temporal areas, in response to faces, buildings, and other objects, shown both as line drawings in detection and discrimination tasks and under more naturalistic testing conditions when no task was required. CP individuals also showed normal adaptation levels in a block-design adaptation experiment and, like control subjects, exhibited evidence of global face representation in the FFA. The absence of a BOLD-behavioral correlation (profound behavioral deficit, normal face-related activation in the ventral occipito-temporal cortex) challenges existing accounts of face representation, and suggests that activation in these cortical regions per se is not sufficient to ensure intact face processing.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2003) 15 (3): 419–431.
Published: 01 April 2003
Abstract
View article
PDF
Congenital prosopagnosia is a severe impairment in face identification manifested from early childhood in the absence of any evident brain lesion. In this study, we used fMRI to compare the brain activity elicited by faces in a congenital prosopagnosic subject (YT) relative to a control group of 12 subjects in an attempt to shed more light on the nature of the brain mechanisms subserving face identification. The face-related activation pattern of YT in the ventral occipito-temporal cortex was similar to that observed in the control group on several parameters: anatomical location, activation profiles, and hemispheric laterality. In addition, using a modified vase – face illusion, we found that YT's brain activity in the face-related regions manifested global grouping processes. However, subtle differences in the degree of selectivity between objects and faces were observed in the lateral occipital cortex. These data suggest that face-related activation in the ventral occipito-temporal cortex, although necessary, might not be sufficient by itself for normal face identification.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2001) 13 (6): 744–753.
Published: 15 August 2001
Abstract
View article
PDF
Recent neuroimaging studies have described a differential activation pattern associated with specific object images (e.g., face-related and building-related activation) in human occipito-temporal cortex. However, it is as yet unclear to what extent this selectivity is due to differences in the statistics of local object features present in the different object categories, and to what extent it reflects holistic grouping processes operating across the entire object image. To resolve this question it is essential to use images in which identical sets of local features elicit the perception of different object categories. The classic Rubin vase-face illusion provides an excellent experimental set to test this question. In the illusion, the same local contours lead to the perception of different objects (vase or face). Here we employed a modified Rubin vase-face illusion to explore to what extent the activation in face-related regions is attributable to the presence of local face features, or is due to a more holistic grouping process that involves the entire face figure. Biasing cues (gratings and color) were used to control the perceptual state of the observer. We found enhanced activation in face-related regions during the “face profile” perceptual state compared to the “vase” perceptual state. Control images ruled out the involvement of the biasing cues in the effect. Thus, object-selective activation in human face-related regions entails global grouping processes that go beyond the local processing of stimulus features.