Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-7 of 7
Rainer Goebel
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2014) 26 (10): 2321–2329.
Published: 01 October 2014
FIGURES
| View All (5)
Abstract
View article
PDF
TMS allows noninvasive manipulation of brain activity in healthy participants and patients. The effectiveness of TMS experiments critically depends on precise TMS coil positioning, which is best for most brain areas when a frameless stereotactic system is used to target activation foci based on individual fMRI data. From a purely scientific perspective, individual fMRI-guided TMS is thus the method of choice to ensure optimal TMS efficiency. Yet, from a more practical perspective, such individual functional data are not always available, and therefore alternative TMS coil positioning approaches are often applied, for example, based on functional group data reported in Talairach coordinates. We here propose a novel method for TMS coil positioning that is based on functional group data, yet only requires individual anatomical data. We used cortex-based alignment (CBA) to transform individual anatomical data to an atlas brain that includes probabilistic group maps of two functional regions (FEF and hMT+/V5). Then, these functional group maps were back-transformed to the individual brain anatomy, preserving functional–anatomical correspondence. As a proof of principle, the resulting CBA-based functional targets in individual brain space were compared with individual FEF and hMT+/V5 hotspots as conventionally localized with individual fMRI data and with targets based on Talairach coordinates as commonly done in TMS research in case only individual anatomical data are available. The CBA-based approach significantly improved localization of functional brain areas compared with traditional Talairach-based targeting. Given the widespread availability of CBA schemes and preexisting functional group data, the proposed procedure is easy to implement and at no additional measurement costs. However, the accuracy of individual fMRI-guided TMS remains unparalleled, and the CBA-based approach should only be the method of choice when individual functional data cannot be obtained or experimental factors argue against it.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2012) 24 (4): 809–818.
Published: 01 April 2012
FIGURES
| View All (5)
Abstract
View article
PDF
The topic of spatial attention is of great relevance for researchers in various fields, including neuropsychology, cognitive neuroscience, and cognitive psychology, as well as for clinical practice. Deficits of spatial attentional arising from parietal brain damage remain largely confined to the left visual field. The mechanisms underlying this hemispheric asymmetry are still elusive. We mimicked the neuropsychological syndrome of contralesional extinction by temporarily inducing a spatial attentional bias in healthy volunteers with TMS. We investigated whether directing covert spatial attention could enhance or, more importantly, counteract the resulting behavioral deficits. Although both the left and right parietal TMS induced contralateral extinction, only left hemifield extinction following right parietal TMS was severely aggravated by a competing stimulus in the ipsilesional (right) hemifield. We put forward the hypothesis that an asymmetry with respect to the ability of detaching attention from a distractor is contributing to the right hemispheric lateralization with regard to extinction. On a broader level, we suggest that “virtual patients” might be used for evaluating neuropsychological treatment in an early stage of development, reducing the burden on actual patients.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2012) 24 (2): 367–377.
Published: 01 February 2012
FIGURES
| View All (4)
Abstract
View article
PDF
Visual scene perception owes greatly to surface features such as color and brightness. Yet, early visual cortical areas predominantly encode surface boundaries rather than surface interiors. Whether human early visual cortex may nevertheless carry a small signal relevant for surface perception is a topic of debate. We induced brightness changes in a physically constant surface by temporally modulating the luminance of surrounding surfaces in seven human participants. We found that fMRI activity in the V2 representation of the constant surface was in antiphase to luminance changes of surrounding surfaces (i.e., activity was in-phase with perceived brightness changes). Moreover, the amplitude of the antiphase fMRI activity in V2 predicted the strength of illusory brightness perception. We interpret our findings as evidence for a surface-related signal in early visual cortex and discuss the neural mechanisms that may underlie that signal in concurrence with its possible interaction with the properties of the fMRI signal.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2010) 22 (9): 2012–2026.
Published: 01 September 2010
FIGURES
| View All (7)
Abstract
View article
PDF
Previous functional imaging research has consistently indicated involvement of bilateral fronto-parietal networks during the execution of visuospatial tasks. Studies with TMS have suggested that the right hemispheric network, but not the left, is functionally relevant for visuospatial judgments. However, very little is still known about the interactions within these fronto-parietal networks underlying visuospatial processing. In the current study, we investigated task modulation of functional connectivity (instantaneous correlations of regional time courses), and task-specific effective connectivity (direction of influences), within the right fronto-parietal network activated during visuospatial judgments. Ten healthy volunteers performed a behaviorally controlled visuospatial judgment task (ANGLE) or a control task (COLOR) in an fMRI experiment. Visuospatial task-specific activations were found in posterior parietal cortex (PPC) and middle/inferior frontal gyrus (MFG). Functional connectivity within this network was task-modulated, with significantly higher connectivity between PPC and MFG during ANGLE than during COLOR. Effective connectivity analysis for directed influence revealed that visuospatial task-specific projections within this network were predominantly in a frontal-to-parietal direction. Moreover, ANGLE-specific influences from thalamic nuclei to PPC were identified. Exploratory effective connectivity analysis revealed that closely neighboring clusters, within visuospatial regions, were differentially involved in the network. These neighboring clusters had opposite effective connectivity patterns to other nodes of the fronto-parietal network. Our data thus reveal that visuospatial judgments are supported by massive fronto-parietal backprojections, thalamo-parietal influence, and multiple stages, or loops, of information flow within the visuospatial network. We speculate on possible functional contributions of the various network nodes and informational loops in a neurocognitive model.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2010) 22 (5): 888–902.
Published: 01 May 2010
FIGURES
| View All (4)
Abstract
View article
PDF
Following destruction or deafferentation of primary visual cortex (area V1, striate cortex), clinical blindness ensues, but residual visual functions may, nevertheless, persist without perceptual consciousness (a condition termed blindsight ). The study of patients with such lesions thus offers a unique opportunity to investigate what visual capacities are mediated by the extrastriate pathways that bypass V1. Here we provide evidence for a crucial role of the collicular–extrastriate pathway in nonconscious visuomotor integration by showing that, in the absence of V1, the superior colliculus (SC) is essential to translate visual signals that cannot be consciously perceived into motor outputs. We found that a gray stimulus presented in the blind field of a patient with unilateral V1 loss, although not consciously seen, can influence his behavioral and pupillary responses to consciously perceived stimuli in the intact field (implicit bilateral summation). Notably, this effect was accompanied by selective activations in the SC and in occipito-temporal extrastriate areas. However, when instead of gray stimuli we presented purple stimuli, which predominantly draw on S-cones and are thus invisible to the SC, any evidence of implicit visuomotor integration disappeared and activations in the SC dropped significantly. The present findings show that the SC acts as an interface between sensory and motor processing in the human brain, thereby providing a contribution to visually guided behavior that may remain functionally and anatomically segregated from the geniculo-striate pathway and entirely outside conscious visual experience.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2009) 21 (6): 1081–1091.
Published: 01 June 2009
Abstract
View article
PDF
If we search for an item, a representation of this item in our working memory guides attention to matching items in the visual scene. We can hold multiple items in working memory. Do all these items guide attention in parallel? We asked participants to detect a target object in a stream of objects while they maintained a second item in memory for a subsequent task. On some trials, we presented this memory item as a distractor in the stream. Subjects did not confuse these memory items with the search target, as the false alarm rate on trials where the memory item was presented in the stream was comparable to that on trials with only regular distractors. However, a comparable performance does not exclude that the memory items are processed differently from normal distractors. We therefore recorded event-related potentials (ERPs) evoked by search targets, memory items, and regular distractors. As expected, ERPs evoked by search targets differed from those evoked by distractors. Search targets elicited an occipital selection negativity and a frontal selection positivity indexing selective attention, whereas the P3b component, which reflects the matching of sensory events to memory representations, was enhanced for targets compared to distractors. Remarkably, the ERPs evoked by memory items were indistinguishable from the ERPs evoked by normal distractors. This implies that the search target has a special status in working memory that is not shared by the other items. These other, “accessory” items do not guide attention and are excluded from the matching process.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2009) 21 (2): 207–221.
Published: 01 February 2009
Abstract
View article
PDF
Transcranial magnetic stimulation (TMS) is a tool for inducing transient disruptions of neural activity noninvasively in conscious human volunteers. In recent years, the investigative domain of TMS has expanded and now encompasses causal structure–function relationships across the whole gamut of cognitive functions and associated cortical brain regions. Consequently, the importance of how to determine the target stimulation site has increased and a number of alternative methods have emerged. Comparison across studies is precluded because different studies necessarily use different tasks, sites, TMS conditions, and have different goals. Here, therefore, we systematically compare four commonly used TMS coil positioning approaches by using them to induce behavioral change in a single cognitive study. Specifically, we investigated the behavioral impact of right parietal TMS during a number comparison task, while basing TMS localization either on (i) individual fMRI-guided TMS neuronavigation, (ii) individual MRI-guided TMS neuronavigation, (iii) group functional Talairach coordinates, or (iv) 10–20 EEG position P4. We quantified the exact behavioral effects induced by TMS using each approach, calculated the standardized experimental effect sizes, and conducted a statistical power analysis in order to calculate the optimal sample size required to reveal statistical significance. Our findings revealed a systematic difference between the four approaches, with the individual fMRI-guided TMS neuronavigation yielding the strongest and the P4 stimulation approach yielding the smallest behavioral effect size. Accordingly, power analyses revealed that although in the fMRI-guided neuronavigation approach five participants were sufficient to reveal a significant behavioral effect, the number of necessary participants increased to n = 9 when employing MRI-guided neuronavigation, to n = 13 in case of TMS based on group Talairach coordinates, and to n = 47 when applying TMS over P4. We discuss these graded effect size differences in light of the revealed interindividual variances in the actual target stimulation site within and between approaches.