Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Raquel E. London
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2021) 33 (4): 756–768.
Published: 01 April 2021
FIGURES
| View All (5)
Abstract
View article
PDF
Selection mechanisms that dynamically gate only relevant perceptual information for further processing and sustained representation in working memory are critical for goal-directed behavior. We examined whether this gating process can be modulated by transcranial direct current stimulation (tDCS) over left dorsolateral prefrontal cortex (lDLPFC)—a region known to play a key role in working memory and conscious access. Specifically, we examined the effects of tDCS on the magnitude of the “attentional blink” (AB), a deficit in identifying the second of two targets presented in rapid succession. Thirty-four participants performed an AB task before (baseline), during and after 20 min of 1-mA anodal and cathodal tDCS in two separate sessions. On the basis of previous reports linking individual differences in AB magnitude to individual differences in DLPFC activity and on the basis of suggestions that effects of tDCS depend on baseline brain activity levels, we hypothesized that anodal tDCS over lDLPFC would modulate the magnitude of the AB as a function of individual baseline AB magnitude. Behavioral results did not provide support for this hypothesis. At the group level, we also did not observe any significant effects of tDCS, and a Bayesian analysis revealed strong evidence that tDCS to lDLPFC did not affect AB performance. Together, these findings do not support the idea that there is an optimal level of prefrontal cortical excitability for cognitive function. More generally, they add to a growing body of work that challenges the idea that the effects of tDCS can be predicted from baseline levels of behavior.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2015) 27 (12): 2382–2393.
Published: 01 December 2015
FIGURES
| View All (5)
Abstract
View article
PDF
Selection mechanisms that dynamically gate only relevant perceptual information for further processing and sustained representation in working memory are critical for goal-directed behavior. We examined whether this gating process can be modulated by anodal transcranial direct current stimulation (tDCS) over left dorsolateral pFC (DLPFC)—a region known to play a key role in working memory and conscious access. Specifically, we examined the effects of tDCS on the magnitude of the so-called “attentional blink” (AB), a deficit in identifying the second of two targets presented in rapid succession. Thirty-four participants performed a standard AB task before (baseline), during, and after 20 min of 1-mA anodal and cathodal tDCS in two separate sessions. On the basis of previous reports linking individual differences in AB magnitude to individual differences in DLPFC activity and on suggestions that effects of tDCS depend on baseline brain activity levels, we hypothesized that anodal tDCS over left DLPFC would modulate the magnitude of the AB as a function of individual baseline AB magnitude. Indeed, individual differences analyses revealed that anodal tDCS decreased the AB in participants with a large baseline AB but increased the AB in participants with a small baseline AB. This effect was only observed during (but not after) stimulation, was not found for cathodal tDCS, and could not be explained by regression to the mean. Notably, the effects of tDCS were not apparent at the group level, highlighting the importance of taking individual variability in performance into account when evaluating the effectiveness of tDCS. These findings support the idea that left DLPFC plays a critical role in the AB and in conscious access more generally. They are also in line with the notion that there is an optimal level of prefrontal activity for cognitive function, with both too little and too much activity hurting performance.