Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Rebecca M. C. Spencer
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2016) 28 (6): 792–802.
Published: 01 June 2016
FIGURES
| View All (4)
Abstract
View articletitled, Age-related Changes in the Sleep-dependent Reorganization of Declarative Memories
View
PDF
for article titled, Age-related Changes in the Sleep-dependent Reorganization of Declarative Memories
Consolidation of declarative memories has been associated with slow wave sleep in young adults. Previous work suggests that, in spite of changes in sleep, sleep-dependent consolidation of declarative memories may be preserved with aging, although reduced relative to young adults. Previous work on young adults shows that, with consolidation, retrieval of declarative memories gradually becomes independent of the hippocampus. To investigate whether memories are similarly reorganized over sleep at the neural level, we compared functional brain activation associated with word pair recall following a nap and equivalent wake in young and older adults. SWS during the nap predicted better subsequent memory recall and was negatively associated with retrieval-related hippocampal activation in young adults. In contrast, in older adults there was no relationship between sleep and memory performance or with retrieval-related hippocampal activation. Furthermore, compared with young adults, postnap memory retrieval in older adults required strong functional connectivity of the hippocampus with the PFC, whereas there were no differences between young and older adults in the functional connectivity of the hippocampus following wakefulness. These results suggest that, although neural reorganization takes place over sleep in older adults, the shift is unique from that seen in young adults, perhaps reflecting memories at an earlier stage of stabilization.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2009) 21 (7): 1302–1310.
Published: 01 July 2009
Abstract
View articletitled, Sequence Learning is Preserved in Individuals with Cerebellar Degeneration when the Movements are Directly Cued
View
PDF
for article titled, Sequence Learning is Preserved in Individuals with Cerebellar Degeneration when the Movements are Directly Cued
Cerebellar pathology is associated with impairments on a range of motor learning tasks including sequence learning. However, various lines of evidence are at odds with the idea that the cerebellum plays a central role in the associative processes underlying sequence learning. Behavioral studies indicate that sequence learning, at least with short periods of practice, involves the establishment of effector-independent, abstract spatial associations, a form of representation not associated with cerebellar function. Moreover, neuroimaging studies have failed to identify learning-related changes within the cerebellum. We hypothesize that the cerebellar contribution to sequence learning may be indirect, related to the maintenance of stimulus–response associations in working memory, rather than through processes directly involved in the formation of sequential predictions. Consistent with this hypothesis, individuals with cerebellar pathology were impaired in learning movement sequences when the task involved a demanding stimulus–response translation. When this translation process was eliminated by having the stimuli directly indicate the response location, the cerebellar ataxia group demonstrated normal sequence learning. This dissociation provides an important constraint on the functional domain of the cerebellum in motor learning.