Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-16 of 16
Richard B. Ivry*
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2024) 36 (6): 1206–1220.
Published: 01 June 2024
FIGURES
| View All (4)
Abstract
View article
PDF
Given that informative and relevant feedback in the real world is often intertwined with distracting and irrelevant feedback, we asked how the relevancy of visual feedback impacts implicit sensorimotor adaptation. To tackle this question, we presented multiple cursors as visual feedback in a center-out reaching task and varied the task relevance of these cursors. In other words, participants were instructed to hit a target with a specific task-relevant cursor, while ignoring the other cursors. In Experiment 1, we found that reach aftereffects were attenuated by the mere presence of distracting cursors, compared with reach aftereffects in response to a single task-relevant cursor. The degree of attenuation did not depend on the position of the distracting cursors. In Experiment 2, we examined the interaction between task relevance and attention. Participants were asked to adapt to a task-relevant cursor/target pair, while ignoring the task-irrelevant cursor/target pair. Critically, we jittered the location of the relevant and irrelevant target in an uncorrelated manner, allowing us to index attention via how well participants tracked the position of target. We found that participants who were better at tracking the task-relevant target/cursor pair showed greater aftereffects, and interestingly, the same correlation applied to the task-irrelevant target/cursor pair. Together, these results highlight a novel role of task relevancy on modulating implicit adaptation, perhaps by giving greater attention to informative sources of feedback, increasing the saliency of the sensory prediction error.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2023) 35 (4): 736–748.
Published: 01 April 2023
FIGURES
| View All (5)
Abstract
View article
PDF
Successful goal-directed actions require constant fine-tuning of the motor system. This fine-tuning is thought to rely on an implicit adaptation process that is driven by sensory prediction errors (e.g., where you see your hand after reaching vs. where you expected it to be). Individuals with low vision experience challenges with visuomotor control, but whether low vision disrupts motor adaptation is unknown. To explore this question, we assessed individuals with low vision and matched controls with normal vision on a visuomotor task designed to isolate implicit adaptation. We found that low vision was associated with attenuated implicit adaptation only for small visual errors, but not for large visual errors. This result highlights important constraints underlying how low-fidelity visual information is processed by the sensorimotor system to enable successful implicit adaptation.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2022) 34 (5): 748–765.
Published: 31 March 2022
FIGURES
| View All (6)
Abstract
View article
PDF
Losing a point in tennis could result from poor shot selection or faulty stroke execution. To explore how the brain responds to these different types of errors, we examined feedback-locked EEG activity while participants completed a modified version of a standard three-armed bandit probabilistic reward task. Our task framed unrewarded outcomes as the result of either errors of selection or errors of execution. We examined whether amplitude of a medial frontal negativity (the feedback-related negativity [FRN]) was sensitive to the different forms of error attribution. Consistent with previous reports, selection errors elicited a large FRN relative to rewards, and amplitude of this signal correlated with behavioral adjustment after these errors. A different pattern was observed in response to execution errors. These outcomes produced a larger FRN, a frontocentral attenuation in activity preceding this component, and a subsequent enhanced error positivity in parietal sites. Notably, the only correlations with behavioral adjustment were with the early frontocentral attenuation and amplitude of the parietal signal; FRN differences between execution errors and rewarded trials did not correlate with subsequent changes in behavior. Our findings highlight distinct neural correlates of selection and execution error processing, providing insight into how the brain responds to the different classes of error that determine future action.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2021) 33 (11): 2413–2425.
Published: 01 October 2021
FIGURES
| View All (4)
Abstract
View article
PDF
A major challenge for neuropsychological research arises from the fact that we are dealing with a limited resource: the patients. Not only is it difficult to identify and recruit these individuals, but their ability to participate in research projects can be limited by their medical condition. As such, sample sizes are small, and considerable time (e.g., 2 years) is required to complete a study. To address limitations inherent to laboratory-based neuropsychological research, we developed a protocol for online neuropsychological testing (PONT). We describe the implementation of PONT and provide the required information and materials for recruiting participants, conducting remote neurological evaluations, and testing patients in an automated, self-administered manner. The protocol can be easily tailored to target a broad range of patient groups, especially those who can be contacted via support groups or multisite collaborations. To highlight the operation of PONT and describe some of the unique challenges that arise in online neuropsychological research, we summarize our experience using PONT in a research program involving individuals with Parkinson disease and spinocerebellar ataxia. In a 10-month period, by contacting 646 support group coordinators, we were able to assemble a participant pool with over 100 patients in each group from across the United States. Moreover, we completed six experiments ( n > 300) exploring their performance on a range of tasks examining motor and cognitive abilities. The efficiency of PONT in terms of data collection, combined with the convenience it offers the participants, promises a new approach that can increase the impact of neuropsychological research.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2017) 29 (6): 1061–1074.
Published: 01 June 2017
FIGURES
| View All (5)
Abstract
View article
PDF
Sensorimotor adaptation occurs when there is a discrepancy between the expected and actual sensory consequences of a movement. This learning can be precisely measured, but its source has been hard to pin down because standard adaptation tasks introduce two potential learning signals: task performance errors and sensory prediction errors. Here we employed a new method that induces sensory prediction errors without task performance errors. This method combines the use of clamped visual feedback that is angularly offset from the target and independent of the direction of motion, along with instructions to ignore this feedback while reaching to targets. Despite these instructions, participants unknowingly showed robust adaptation of their movements. This adaptation was similar to that observed with standard methods, showing sign dependence, local generalization, and cerebellar dependency. Surprisingly, adaptation rate and magnitude were invariant across a large range of offsets. Collectively, our results challenge current models of adaptation and demonstrate that behavior observed in many studies of adaptation reflect the composite effects of task performance and sensory prediction errors.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2016) 28 (9): 1283–1294.
Published: 01 September 2016
FIGURES
| View All (4)
Abstract
View article
PDF
In perceptual decision-making tasks, people balance the speed and accuracy with which they make their decisions by modulating a response threshold. Neuroimaging studies suggest that this speed–accuracy tradeoff is implemented in a corticobasal ganglia network that includes an important contribution from the pre-SMA. To test this hypothesis, we used anodal transcranial direct current stimulation (tDCS) to modulate neural activity in pre-SMA while participants performed a simple perceptual decision-making task. Participants viewed a pattern of moving dots and judged the direction of the global motion. In separate trials, they were cued to either respond quickly or accurately. We used the diffusion decision model to estimate the response threshold parameter, comparing conditions in which participants received sham or anodal tDCS. In three independent experiments, we failed to observe an influence of tDCS on the response threshold. Additional, exploratory analyses showed no influence of tDCS on the duration of nondecision processes or on the efficiency of information processing. Taken together, these findings provide a cautionary note, either concerning the causal role of pre-SMA in decision-making or on the utility of tDCS for modifying response caution in decision-making tasks.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2014) 26 (2): 269–278.
Published: 01 February 2014
FIGURES
Abstract
View article
PDF
Previous studies have identified two inhibitory mechanisms that operate during action selection and preparation. One mechanism, competition resolution, is manifest in the inhibition of the nonselected response and attributed to competition between candidate actions. The second mechanism, impulse control, is manifest in the inhibition of the selected response and is presumably invoked to prevent premature response. To identify constraints on the operation of these two inhibitory mechanisms, we manipulated the effectors used for the response alternatives, measuring changes in corticospinal excitability with motor-evoked potentials to TMS. Inhibition of the selected response (impulse control) was independent of the task context, consistent with a model in which this form of inhibition is automatically triggered as part of response preparation. In contrast, inhibition of the nonselected response (competition resolution) was context-dependent. Inhibition of the nonselected response was observed when the response alternatives involved movements of the upper limbs but was absent when one response alternative involved an upper limb and the other involved a lower limb. Interestingly, competition resolution for pairs of upper limbs did not require homologous effectors, observed when a left index finger response was pitted with either a nonhomologous right index finger movement or a right arm movement. These results argue against models in which competition resolution is viewed as a generic or fully flexible process, as well as models based on strong anatomical constraints. Rather, they are consistent with models in which inhibition for action selection is constrained by the similarity between the potential responses, perhaps reflecting an experience-dependent mechanism sensitive to the past history of competitive interactions.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2011) 23 (9): 2468–2480.
Published: 01 September 2011
FIGURES
| View All (7)
Abstract
View article
PDF
Executing difficult actions with the left hand results in bilateral activity of motor areas along the precentral gyrus. Using TMS and fMRI, we explored the functional relationship between primary (M1) and premotor areas during unimanual actions, focusing on M1 activity in the ipsilateral hemisphere. Single-pulse TMS revealed that the amplitude of motor-evoked potentials (MEPs), elicited in the stationary right-hand muscles following left M1 stimulation, fluctuated with the state of homologous muscles in the moving left hand. This ipsilateral excitability was pronounced when the left-hand movements were more complex. We used fMRI to visualize the cortical dynamics during unimanual actions. Trial-by-trial fluctuations in ipsilateral M1 activity were correlated with contralateral M1 responses and this correlation increased with movement complexity. Consistent with previous studies, the left caudal precentral premotor area (pcPM) was engaged during movements of either hand. Following low-frequency rTMS over left pcPM, the correlation between the activity level in the two M1s increased. This finding indicates that left pcPM may regulate the unintentional mirroring of motor commands in M1 during unilateral movement.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2009) 21 (7): 1302–1310.
Published: 01 July 2009
Abstract
View article
PDF
Cerebellar pathology is associated with impairments on a range of motor learning tasks including sequence learning. However, various lines of evidence are at odds with the idea that the cerebellum plays a central role in the associative processes underlying sequence learning. Behavioral studies indicate that sequence learning, at least with short periods of practice, involves the establishment of effector-independent, abstract spatial associations, a form of representation not associated with cerebellar function. Moreover, neuroimaging studies have failed to identify learning-related changes within the cerebellum. We hypothesize that the cerebellar contribution to sequence learning may be indirect, related to the maintenance of stimulus–response associations in working memory, rather than through processes directly involved in the formation of sequential predictions. Consistent with this hypothesis, individuals with cerebellar pathology were impaired in learning movement sequences when the task involved a demanding stimulus–response translation. When this translation process was eliminated by having the stimuli directly indicate the response location, the cerebellar ataxia group demonstrated normal sequence learning. This dissociation provides an important constraint on the functional domain of the cerebellum in motor learning.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2008) 20 (3): 526–540.
Published: 01 March 2008
Abstract
View article
PDF
Two studies [Ivry, R. B., Franz, E. A., Kingstone, A., & Johnston, J. C. The psychological refractory period effect following callosotomy: Uncoupling of lateralized response codes. Journal of Experimental Psychology: Human Perception and Performance, 24 , 463–480, 1998; Pashler, H., Luck, S., Hillyard, S. A., Mangun, G. R., O'Brien, S., & Gazzaniga, M. S. Sequential operation of disconnected hemispheres in split-brain patients. NeuroReport, 5 , 2381–2384, 1994] reported robust dual-task costs in split-brain patients even when the two tasks were associated with separate cerebral hemispheres. Although the patients failed to demonstrate specific forms of interference observed in control participants, the timing of the two responses suggested that performance was constrained such that the responses could not be initiated independently. Alternatively, the split-brain participants may have adopted a strategy in which the second response was withheld until the first was initiated. The present study revisits this phenomenon using a procedure in which the stimuli for both tasks are presented simultaneously and neither is given priority over the other. Under these conditions, neurologically intact participants show robust dual-task costs that are mediated by compatibility effects between the responses of the two hands. In contrast, the split-brain participants show greatly reduced dual-task costs and compatibility effects. The minimal dual-task costs observed in the current study indicate that previous dual-task costs in split-brain patients may be strategic, reflecting experimental instructions to prioritize one task, rather than reflect fundamental constraints of the cognitive architecture.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2006) 18 (9): 1570–1576.
Published: 01 September 2006
Abstract
View article
PDF
In some individuals, a visually presented letter or number automatically evokes the perception of a specific color, an experience known as color-grapheme synesthesia. It has been suggested that parietal binding mechanisms play a role in the phenomenon. We used a noninvasive stimulation technique, transcranial magnetic stimulation (TMS), to determine whether the posterior parietal lobe is critical for the integration of color and shape in color-grapheme synesthesia, as it appears to be for normal color-shape binding. Using a color-naming task with colored letters that were either congruent or incongruent with the synesthetic photism, we demonstrate that inhibition of the right posterior parietal lobe with repetitive TMS transiently attenuates synesthetic binding. These findings suggest that synesthesia (the induction of color from shape) relies on similar mechanisms as found in normal perception (where the perception of color is induced by wavelength).
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2005) 17 (5): 707–723.
Published: 01 May 2005
Abstract
View article
PDF
The basal ganglia and cerebellum have both been implicated in motor skill acquisition. Recent hypotheses concerning cognitive functions of the basal ganglia and cerebellum have emphasized that these subcortical structures may also contribute to nonmotor learning. To explore this issue, patients with Parkinson's disease (PD) and patients with cerebellar lesions (CB) were tested on two category-learning tasks. Identical stimulus displays were used for the two tasks, consisting of a reference line and target line. In the length task, the two categories were defined based on the length of the target line. In the distance task, the two categories were defined by the distance between the target and reference lines. Thus, both categories could be defined by a simple rule in which attention must be restricted to a single relevant dimension. Consistent with previous results, the patients with PD were impaired on both tasks compared with neurologically healthy controls. In contrast, the CB patients performed similar to the control participants. Model-based analyses indicate that the patients with PD were able to select the appropriate categorization rule, but that they adopted suboptimal category boundaries in both conditions and were more variable in the application of the selected rule. These results provide an important neuropsychological dissociation on a non-motor-learning task between the effects of basal ganglia and cerebellar lesions. Moreover, the modeling work suggests that at least part of the Parkinson patients' impairment on these tasks reflect a tendency to exhibit strong response biases.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2003) 15 (8): 1232–1243.
Published: 15 November 2003
Abstract
View article
PDF
The functional role of different subcortical areas in sequence learning is not clear. In the current study, Parkinson's patients, patients with cerebellar damage, and age-matched control participants performed a serial reaction time task in which a spatial sequence and a temporal sequence were presented simultaneously. The responses were based on the spatial sequence, and the temporal sequence was incidental to the task. The two sequences were of the same length, and the phase relationship between them was held constant throughout training. Sequence learning was assessed comparing performance when both sequences were present versus when the dimension of interest was randomized. In addition, sequence integration was assessed by introducing phase-shift blocks. A functional dissociation was found between the two patient groups. Whereas the Parkinson's patients learned the spatial and temporal sequences individually, they did not learn the relationship between the two sequences, suggesting the basal ganglia play a functional role in sequence integration. In contrast, the cerebellar patients did not show any evidence of sequence learning at all, suggesting the cerebellum might play a general role in forming sequential associations.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2001) 13 (3): 285–297.
Published: 01 April 2001
Abstract
View article
PDF
The basal ganglia and cerebellum have traditionally been associated with motor performance. Recently, there has been considerable interest regarding the contributions of these subcortical structures to aspecdts of cognition. In particular, both the basal ganglia and cerebellum have been hypothesized to be involved in the control of attentional set. To dat, no neuropsychological studies have directly compared the effects of basal ganglia and cerebellar dysfunction on the same attention shifting tasks. To this end, dwe employed and alternating attention task that has been used to demonstrate putative attentional control deficits in children with cerebellar pathology, either related to autism or neurological insult. When adult patients with either Parkinson's disease or cerebellar lesions were tested on this task, a similar pattern of deficits was observed for both groups. However, when the motor demands were reduced, cerebellar patients showed a significant improvement on the alternating attention task, whereas the Parkinson patients continued to exhibit an impairment. This dissociation suggests that attentional deficits reported previously as being due to cerebellar dysfunction may be, at least in part, secondary to problem related to coordinating successive responses. In contrast, attention-shifting deficits associated with basal ganglia impairment cannot be explained by recourse to the motor demands of the task.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (1991) 3 (4): 355–366.
Published: 01 October 1991
Abstract
View article
PDF
In three psychophysical experiments, cerebellar patients were impaired in making perceptual judgments of the velocity of moving stimuli. Performance was normal when the judgment concerned the position of the stimuli (Experiment 1). The dissociation between the velocity and position tasks suggests the cerebellar group was selectively impaired in velocity perception. EOG data were obtained in Experiments 2 and 3 to assess whether the deficit was oculomotor in origin. Perceptual errors were not correlated with the occurrence of intrusive eye movements. These results provide a novel demonstration of the role of the cerebellum in perceptual functions that require precise timing.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (1989) 1 (2): 136–152.
Published: 01 April 1989
Abstract
View article
PDF
This study investigated the effects of different types of neurological deficits on timing functions. The performance of Parkinson, cerebellar, cortical, and peripheral neuropathy patients was compared to age-matched control subjects on two separate measures of timing functions. The first task involved the production of timed intervals in which the subjects attempted to maintain a simple rhythm. The second task measured the subjects' perceptual ability to discriminate between small differences in the duration of two intervals. The primacy of the cerebellum in timing functions was demonstrated by the finding that these were the only patients who showed a deficit in both the production and perception of timing tasks. The cerebellar group was found to have increased variability in performing rhythmic tapping and they were less accurate than the other groups in making perceptual discriminations regarding small differences in duration. Critically, this perceptual deficit appears to be specific to the perception of time since the cerebellar patients were unaffected in a control task measuring the perception of loudness. It is argued that the operation of a timing mechanism can be conceptualized as an isolable component of the motor control system. Furthermore, the results suggest that the domain of the cerebellar timing process is not limited to the motor system, but is employed by other perceptual and cognitive systems when temporally predictive computations are needed.