Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Risa Sawaki
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2015) 27 (11): 2229–2239.
Published: 01 November 2015
FIGURES
| View All (4)
Abstract
View article
PDF
Although the performance of simple cognitive tasks can be enhanced if an incentive is provided, the mechanisms enabling such motivational control are not known. This study sought to uncover how mechanisms of attention and readiness are altered by reward-associated incentive stimuli. We measured EEG/ERP activity as human adults viewed a high- or low-incentive cue, experienced a short preparation interval, and then performed a simple visual search task to gain the predicted reward. Search performance was faster with high versus low incentives, and this was accompanied by distinct incentive-related EEG/ERP patterns at each phase of the task (incentive, preparation, and search). First, and most surprisingly, attention to high but not low incentive cues was actively suppressed, as indexed by a P D component in response to the incentive display. During the subsequent preparation interval, neural oscillations in the alpha frequency range were reduced after high-incentive cues, indicating heightened visual readiness. Finally, attentional orienting to the target in the search array was deployed with relatively little effort on high-incentive trials, as indexed by a reduced N2pc component. These results reveal the chain of events by which the brain's executive control mechanisms respond to incentives by altering the operation of multiple processing systems to produce optimal performance.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2009) 21 (2): 359–371.
Published: 01 February 2009
Abstract
View article
PDF
Attentional capture for distractors is enhanced by increasing the difficulty of discrimination between the standard and the target in the three-stimulus oddball paradigm. In this study, we investigated the cognitive mechanism of this modulation of attentional capture. Event-related brain potentials were recorded from participants while they performed a visual three-stimulus oddball paradigm (frequent standard, rare target, and rare distractor). The discrimination difficulty between standard and target was manipulated in the central location. Distractor stimuli were presented in the central or surrounding locations. The P3a component was elicited by distractor stimuli and was used as a measure of attentional capture. The results revealed that discrimination difficulty had opposite effects on the P3a response between central and surrounding locations. With an increase in the difficulty of discrimination, the P3a response was enhanced when distractor stimuli were presented in the central location. In contrast, the P3a response was reduced when distractor stimuli were presented in a surrounding location. This finding suggests that spatial attention was focused by the difficulty of discrimination, and deviant processing was increased within its focus but decreased outside its focus. Therefore, attentional capture for deviant distractors is modulated by top–down controlled attentional focus.