Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Roland Zahn
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2016) 28 (3): 351–360.
Published: 01 March 2016
FIGURES
Abstract
View article
PDF
Studies of semantic dementia, imaging, and repetitive TMS have suggested that the bilateral anterior temporal lobes (ATLs) underpin a modality-invariant representational hub within the semantic system. Questions remain, however, regarding functional specialization across a variety of knowledge domains within the ATL region. We investigated direct evidence for the functional relevance of the superior ATL in processing social concepts. Using converging evidence from noninvasive brain stimulation and neuropsychology, we demonstrate graded differentiation of right and left superior anterior temporal areas in social cognition. Whereas the left superior ATL is necessary for processing both social and nonsocial abstract concepts, social conceptual processing predominates in the right superior ATL. This graded hemispheric specialization is mirrored in the patient results. Our data shed new light on the classic debate about hemispheric differences in semantic and social cognition. These results are considered in the context of models of semantic representation and the emerging data on connectivity for left and right ATL regions.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2006) 18 (12): 2138–2151.
Published: 01 November 2006
Abstract
View article
PDF
The study of semantic memory in patients with Alzheimer's disease (AD) has raised important questions about the representation of conceptual knowledge in the human brain. It is still unknown whether semantic memory impairments are caused by localized damage to specialized regions or by diffuse damage to distributed representations within nonspecialized brain areas. To our knowledge, there have been no direct correlations of neuroimaging of in vivo brain function in AD with performance on tasks differentially addressing visual and functional knowledge of living and nonliving concepts. We used a semantic verification task and resting 18-fluorodeoxyglucose positron emission tomography in a group of mild to moderate AD patients to investigate this issue. The four task conditions required semantic knowledge of (1) visual, (2) functional properties of living objects, and (3) visual or (4) functional properties of nonliving objects. Visual property verification of living objects was significantly correlated with left posterior fusiform gyrus metabolism (Brodmann's area [BA] 37/19). Effects of visual and functional property verification for non-living objects largely overlapped in the left anterior temporal (BA 38/20) and bilateral premotor areas (BA 6), with the visual condition extending more into left lateral precentral areas. There were no associations with functional property verification for living concepts. Our results provide strong support for anatomically separable representations of living and nonliving concepts, as well as visual feature knowledge of living objects, and against distributed accounts of semantic memory that view visual and functional features of living and nonliving objects as distributed across a common set of brain areas.