Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-3 of 3
Russell A. Epstein
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2022) 34 (3): 397–410.
Published: 01 February 2022
FIGURES
| View All (4)
Abstract
View article
PDF
Scene perception and spatial navigation are interdependent cognitive functions, and there is increasing evidence that cortical areas that process perceptual scene properties also carry information about the potential for navigation in the environment (navigational affordances). However, the temporal stages by which visual information is transformed into navigationally relevant information are not yet known. We hypothesized that navigational affordances are encoded during perceptual processing and therefore should modulate early visually evoked ERPs, especially the scene-selective P2 component. To test this idea, we recorded ERPs from participants while they passively viewed computer-generated room scenes matched in visual complexity. By simply changing the number of doors (0 doors, 1 door, 2 doors, 3 doors), we were able to systematically vary the number of pathways that afford movement in the local environment, while keeping the overall size and shape of the environment constant. We found that rooms with 0 doors evoked a higher P2 response than rooms with three doors, consistent with prior research reporting higher P2 amplitude to closed relative to open scenes. Moreover, we found P2 amplitude scaled linearly with the number of doors in the scenes. Navigability effects on the ERP waveform were also observed in a multivariate analysis, which showed significant decoding of the number of doors and their location at earlier time windows. Together, our results suggest that navigational affordances are represented in the early stages of scene perception. This complements research showing that the occipital place area automatically encodes the structure of navigable space and strengthens the link between scene perception and navigation.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2015) 27 (5): 959–973.
Published: 01 May 2015
FIGURES
| View All (7)
Abstract
View article
PDF
Although previous neuroimaging research has identified overlapping correlates of subjective value across different reward types in the ventromedial pFC (vmPFC), it is not clear whether this “common currency” evaluative signal extends to the aesthetic domain. To examine this issue, we scanned human participants with fMRI while they made attractiveness judgments of faces and places—two stimulus categories that are associated with different underlying rewards, have very different visual properties, and are rarely compared with each other. We found overlapping signals for face and place attractiveness in the vmPFC, consistent with the idea that this region codes a signal for value that applies across disparate reward types and across both economic and aesthetic judgments. However, we also identified a subregion of vmPFC within which activity patterns for face and place attractiveness were distinguishable, suggesting that some category-specific attractiveness information is retained in this region. Finally, we observed two separate functional regions in lateral OFC: one region that exhibited a category-unique response to face attractiveness and another region that responded strongly to faces but was insensitive to their value. Our results suggest that vmPFC supports a common mechanism for reward evaluation while also retaining a degree of category-specific information, whereas lateral OFC may be involved in basic reward processing that is specific to only some stimulus categories.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2005) 17 (1): 73–83.
Published: 01 January 2005
Abstract
View article
PDF
Humans and animals use information obtained from different viewpoints to form representations of the spatial structure of the world. We used functional magnetic resonance imaging (fMRI) adaptation to investigate the neural basis of this learning process and to show how the concomitant representations vary across individuals as a function of navigational ability. In particular, we examined the effect of repeating viewpoint and/ or place information over both short (within-trial) and long (across-scan) intervals on the neural response in scene processing regions. Short-term fMRI adaptation effects in the parahippocampal cortex were initially highly viewpoint-specific but became less so over time. Long-term fMRI repetition effects included a significant viewpoint-invariant component. When individual differences in navigational ability were considered, a significant correlation between the strength of these effects and self-reported navigational competence was observed. In particular, good navigators encoded representations that differed between new and old views and new and old places, whereas bad navigators did not. These results suggest that cortical scene representations evolve over time to become more viewpoint-invariant and that the quality of these representations directly impacts navigational ability.