Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Ruth de Diego-Balaguer
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2011) 23 (10): 3105–3120.
Published: 01 October 2011
FIGURES
| View All (5)
Abstract
View article
PDF
Language acquisition is a complex process that requires the synergic involvement of different cognitive functions, which include extracting and storing the words of the language and their embedded rules for progressive acquisition of grammatical information. As has been shown in other fields that study learning processes, synchronization mechanisms between neuronal assemblies might have a key role during language learning. In particular, studying these dynamics may help uncover whether different oscillatory patterns sustain more item-based learning of words and rule-based learning from speech input. Therefore, we tracked the modulation of oscillatory neural activity during the initial exposure to an artificial language, which contained embedded rules. We analyzed both spectral power variations, as a measure of local neuronal ensemble synchronization, as well as phase coherence patterns, as an index of the long-range coordination of these local groups of neurons. Synchronized activity in the gamma band (20–40 Hz), previously reported to be related to the engagement of selective attention, showed a clear dissociation of local power and phase coherence between distant regions. In this frequency range, local synchrony characterized the subjects who were focused on word identification and was accompanied by increased coherence in the theta band (4–8 Hz). Only those subjects who were able to learn the embedded rules showed increased gamma band phase coherence between frontal, temporal, and parietal regions.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2006) 18 (8): 1277–1291.
Published: 01 August 2006
Abstract
View article
PDF
Performance-based studies on the psychological nature of linguistic competence can conceal significant differences in the brain processes that underlie native versus nonnative knowledge of language. Here we report results from the brain activity of very proficient early bilinguals making a lexical decision task that illustrates this point. Two groups of Spanish-Catalan early bilinguals (Spanish-dominant and Catalan-dominant) were asked to decide whether a given form was a Catalan word or not. The nonwords were based on real words, with one vowel changed. In the experimental stimuli, the vowel change involved a Catalan-specific contrast that previous research had shown to be difficult for Spanish natives to perceive. In the control stimuli, the vowel switch involved contrasts common to Spanish and Catalan. The results indicated that the groups of bilinguals did not differ in their behavioral and event-related brain potential measurements for the control stimuli; both groups made very few errors and showed a larger N400 component for control nonwords than for control words. However, significant differences were observed for the experimental stimuli across groups: Specifically, Spanish-dominant bilinguals showed great difficulty in rejecting experimental nonwords. Indeed, these participants not only showed very high error rates for these stimuli, but also did not show an error-related negativity effect in their erroneous nonword decisions. However, both groups of bilinguals showed a larger correct-related negativity when making correct decisions about the experimental nonwords. The results suggest that although some aspects of a second language system may show a remarkable lack of plasticity (like the acquisition of some foreign contrasts), first-language representations seem to be more dynamic in their capacity of adapting and incorporating new information.