Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Rutvik H. Desai
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2016) 28 (5): 693–709.
Published: 01 May 2016
FIGURES
| View All (6)
Abstract
View article
PDF
Embodied theories of language maintain that brain areas associated with perception and action are also involved in the processing and representation of word meaning. A number of studies have shown that sentences with action verbs elicit activation within sensory–motor brain regions, arguing that sentence-induced mental simulations provide a means for grounding their lexical-semantic meaning. Constructionist theories argue, however, that form–meaning correspondence is present not only at the lexical level but also at the level of constructions. We investigated whether sentence-induced motor resonance is present for syntactic constructions. We measured the BOLD signal while participants read sentences with (di)transitive (caused motion) or intransitive constructions that contained either action or abstract verbs. The results showed a distinct neuronal signature for caused motion and intransitive syntactic frames. Caused motion frames activated regions associated with reaching and grasping actions, including the left anterior intraparietal sulcus and the parietal reach region. Intransitive frames activated lateral temporal regions commonly associated with abstract word processing. The left pars orbitalis showed an interaction between the syntactic frame and verb class. These findings show that sensory–motor activation elicited by sentences entails both motor resonance evoked by single words as well as at the level of syntactic constructions.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2011) 23 (9): 2376–2386.
Published: 01 September 2011
FIGURES
Abstract
View article
PDF
The role of sensory-motor systems in conceptual understanding has been controversial. It has been proposed that many abstract concepts are understood metaphorically through concrete sensory-motor domains such as actions. Using fMRI, we compared neural responses with literal action (Lit; The daughter grasped the flowers ), metaphoric action (Met; The public grasped the idea ), and abstract (Abs; The public understood the idea ) sentences of varying familiarity. Both Lit and Met sentences activated the left anterior inferior parietal lobule, an area involved in action planning, with Met sentences also activating a homologous area in the right hemisphere, relative to Abs sentences. Both Met and Abs sentences activated the left superior temporal regions associated with abstract language. Importantly, activation in primary motor and biological motion perception regions was inversely correlated with Lit and Met familiarity. These results support the view that the understanding of metaphoric action retains a link to sensory-motor systems involved in action performance. However, the involvement of sensory-motor systems in metaphor understanding changes through a gradual abstraction process whereby relatively detailed simulations are used for understanding unfamiliar metaphors, and these simulations become less detailed and involve only secondary motor regions as familiarity increases. Consistent with these data, we propose that anterior inferior parietal lobule serves as an interface between sensory-motor and conceptual systems and plays an important role in both domains. The similarity of abstract and metaphoric sentences in the activation of left superior temporal regions suggests that action metaphor understanding is not completely based on sensory-motor simulations but relies also on abstract lexical-semantic codes.