Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-1 of 1
Sébastien M. Crouzet
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2015) 27 (1): 141–149.
Published: 01 January 2015
FIGURES
Abstract
View articletitled, At 120 msec You Can Spot the Animal but You Don't Yet Know It's a Dog
View
PDF
for article titled, At 120 msec You Can Spot the Animal but You Don't Yet Know It's a Dog
Earlier studies suggested that the visual system processes information at the basic level (e.g., dog) faster than at the subordinate (e.g., Dalmatian) or superordinate (e.g., animals) levels. However, the advantage of the basic category over the superordinate category in object recognition has been challenged recently, and the hierarchical nature of visual categorization is now a matter of debate. To address this issue, we used a forced-choice saccadic task in which a target and a distractor image were displayed simultaneously on each trial and participants had to saccade as fast as possible toward the image containing animal targets based on different categorization levels. This protocol enables us to investigate the first 100–120 msec, a previously unexplored temporal window, of visual object categorization. The first result is a surprising stability of the saccade latency (median RT ∼155 msec) regardless of the animal target category and the dissimilarity of target and distractor image sets. Accuracy was high (around 80% correct) for categorization tasks that can be solved at the superordinate level but dropped to almost chance levels for basic level categorization. At the basic level, the highest accuracy (62%) was obtained when distractors were restricted to another dissimilar basic category. Computational simulations based on the saliency map model showed that the results could not be predicted by pure bottom–up saliency differences between images. Our results support a model of visual recognition in which the visual system can rapidly access relatively coarse visual representations that provide information at the superordinate level of an object, but where additional visual analysis is required to allow more detailed categorization at the basic level.