Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Sanjay Kumar
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2012) 24 (11): 2268–2279.
Published: 01 November 2012
FIGURES
| View All (4)
Abstract
View article
PDF
There is considerable evidence that there are anatomically and functionally distinct pathways for action and object recognition. However, little is known about how information about action and objects is integrated. This study provides fMRI evidence for task-based selection of brain regions associated with action and object processing, and on how the congruency between the action and the object modulates neural response. Participants viewed videos of objects used in congruent or incongruent actions and attended either to the action or the object in a one-back procedure. Attending to the action led to increased responses in a fronto-parietal action-associated network. Attending to the object activated regions within a fronto-inferior temporal network. Stronger responses for congruent action–object clips occurred in bilateral parietal, inferior temporal, and putamen. Distinct cortical and thalamic regions were modulated by congruency in the different tasks. The results suggest that (i) selective attention to action and object information is mediated through separate networks, (ii) object–action congruency evokes responses in action planning regions, and (iii) the selective activation of nuclei within the thalamus provides a mechanism to integrate task goals in relation to the congruency of the perceptual information presented to the observer.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2010) 22 (10): 2212–2225.
Published: 01 October 2010
FIGURES
| View All (5)
Abstract
View article
PDF
Visual evoked responses were monitored while participants searched for a target (e.g., bird ) in a four-object display that could include a semantically related distractor (e.g., fish ). The occurrence of both the target and the semantically related distractor modulated the N2pc response to the search display: The N2pc amplitude was more pronounced when the target and the distractor appeared in the same visual field, and it was less pronounced when the target and the distractor were in opposite fields, relative to when the distractor was absent. Earlier components (P1, N1) did not show any differences in activity across the different distractor conditions. The data suggest that semantic distractors influence early stages of selecting stimuli in multielement displays.