Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-4 of 4
Sarah DuBrow
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2024) 36 (11): 2302–2316.
Published: 01 November 2024
FIGURES
| View All (5)
Abstract
View articletitled, Medial Temporal Lobe Damage Impairs Temporal Integration in Episodic Memory
View
PDF
for article titled, Medial Temporal Lobe Damage Impairs Temporal Integration in Episodic Memory
Although the role of the medial temporal lobe (MTL) and the hippocampus in episodic memory is well established, there is emerging evidence that these regions play a broader role in cognition, specifically in temporal processing. However, despite strong evidence that the hippocampus plays a critical role in sequential processing, the involvement of the MTL in timing per se is poorly understood. In the present study, we investigated whether patients with MTL damage exhibit differential performance on a temporal distance memory task. Critically, we manipulated context shifts, or boundaries, which have been shown to interfere with associative binding, leading to increases in subjective temporal distance. We predicted that patients with MTL damage would show impaired binding across boundaries and thus fail to show temporal expansion. Consistent with this hypothesis, unilateral patients failed to show a temporal expansion effect, and bilateral patients actually exhibited the reverse effect, suggesting a critical role for the MTL in binding temporal information across boundaries. Furthermore, patients were impaired overall on both the temporal distance memory task and recognition memory, but not on an independent, short-timescale temporal perception task. Interestingly, temporal distance performance could be independently predicted by performance on recognition memory and the short temporal perception task. Together, these data suggest that distinct mnemonic and temporal processes may influence long interval temporal memory and that damage to the MTL may impair the ability to integrate episodic and temporal information in memory.
Journal Articles
The Ubiquity of Time in Latent-cause Inference
UnavailablePublisher: Journals Gateway
Journal of Cognitive Neuroscience (2024) 36 (11): 2442–2454.
Published: 01 November 2024
FIGURES
| View All (4)
Abstract
View articletitled, The Ubiquity of Time in Latent-cause Inference
View
PDF
for article titled, The Ubiquity of Time in Latent-cause Inference
Humans have an outstanding ability to generalize from past experiences, which requires parsing continuously experienced events into discrete, coherent units, and relating them to similar past experiences. Time is a key element in this process; however, how temporal information is used in generalization remains unclear. Latent-cause inference provides a Bayesian framework for clustering experiences, by building a world model in which related experiences are generated by a shared cause. Here, we examine how temporal information is used in latent-cause inference, using a novel task in which participants see “microbe” stimuli and explicitly report the latent cause (“strain”) they infer for each microbe. We show that humans incorporate time in their inference of latent causes, such that recently inferred latent causes are more likely to be inferred again. In particular, a “persistent” model, in which the latent cause inferred for one observation has a fixed probability of continuing to cause the next observation, explains the data significantly better than two other time-sensitive models, although extensive individual differences exist. We show that our task and this model have good psychometric properties, highlighting their potential use for quantifying individual differences in computational psychiatry or in neuroimaging studies.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2024) 36 (11): 2432–2441.
Published: 01 November 2024
FIGURES
| View All (4)
Abstract
View articletitled, Threat Impairs the Organization of Memory Around Motivational Context
View
PDF
for article titled, Threat Impairs the Organization of Memory Around Motivational Context
Previous work highlighted a critical role for top–down goals in shifting memory organization, namely, through studying the downstream influences of event segmentation and task switching on free recall. Here, we extend these frameworks into the realm of motivation, by comparing how threat motivation influences memory organization by capturing free recall dynamics. In Study 1, we manipulated individuals' motivation to successfully encode information by the threat of exposure to aversive sounds for forgetting. In Study 2, we conducted a parallel study manipulating motivation via instruction rather than threat, allowing us to examine changes directly related to threat motivation. Our findings showed that motivation to avoid threat broadly enhances memory for items presented within a threatening context, regardless of whether items were directly associated with the threat or not. Concurrently, these memory enhancements coincide with a decrease in the organization of memory around motivationally relevant features. These results highlight the importance of considering motivational valence when conceptualizing memory organization within adaptive memory frameworks.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2019) 31 (9): 1308–1317.
Published: 01 September 2019
FIGURES
| View All (5)
Abstract
View articletitled, Decision-making Increases Episodic Memory via Postencoding Consolidation
View
PDF
for article titled, Decision-making Increases Episodic Memory via Postencoding Consolidation
The ability for individuals to actively make decisions engages regions within the mesolimbic system and enhances memory for chosen items. In other behavioral contexts, mesolimbic engagement has been shown to enhance episodic memory by supporting consolidation. However, research has yet to investigate how consolidation may support interactions between decision-making and episodic memory. Across two studies, participants encoded items that were covered by occluder screens and could either actively decide which of two items to uncover or an item was preselected by the experimenter. In Study 1, we show that active decision-making reduces forgetting rates across an immediate and 24-hr memory test, a behavioral marker of consolidation. In Study 2, we use functional neuroimaging to characterize putative neural markers of memory consolidation by measuring interactions between the hippocampus and perirhinal cortex (PRC) during a postencoding period that reexposed participants to elements of the decision-making context without exposing them to memoranda. We show that choice-related striatal engagement is associated with increased postencoding hippocampal–PRC interactions. Finally, we show that a previous reported relationship between choice-related striatal engagement and long-term memory is accounted for by these postencoding hippocampal–PRC interactions. Together, these findings support a model by which actively deciding to encode information enhances memory consolidation to preserve episodic memory for outcomes, a process that may be facilitated by reexposure to the original decision-making context.