Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-3 of 3
Satoru Suzuki
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2020) 32 (9): 1654–1671.
Published: 01 September 2020
FIGURES
| View All (7)
Abstract
View article
PDF
Sensory systems utilize temporal structure in the environment to build expectations about the timing of forthcoming events. We investigated the effects of rhythm-based temporal expectation on auditory responses measured with EEG recorded from the frontocentral sites implicated in auditory processing. By manipulating temporal expectation and the interonset interval (IOI) of tones, we examined how neural responses adapted to auditory rhythm and reacted to stimuli that violated the rhythm. Participants passively listened to the tones while watching a silent nature video. In Experiment 1 ( n = 22), in the long-IOI block, tones were frequently presented (80%) with 1.7-sec IOI and infrequently presented (20%) with 1.2-sec IOI, generating unexpectedly early tones that violated temporal expectation. Conversely, in the short-IOI block, tones were frequently presented with 1.2-sec IOI and infrequently presented with 1.7-sec IOI, generating late tones. We analyzed the tone-evoked N1–P2 amplitude of ERPs and intertrial phase clustering in the theta–alpha band. The results provided evidence of strong delay-dependent adaptation effects (short-term, sensitive to IOI), weak cumulative adaptation effects (long-term, driven by tone repetition over time), and robust temporal-expectation violation effects over and above the adaptation effects. Experiment 2 ( n = 22) repeated Experiment 1 with shorter IOIs of 1.2 and 0.7 sec. Overall, we found evidence of strong delay-dependent adaptation effects, weak cumulative adaptation effects (which may most efficiently accumulate at the tone presentation rate of ∼1 Hz), and robust temporal-expectation violation effects that substantially boost auditory responses to the extent of overriding the delay-dependent adaptation effects likely through mechanisms involved in exogenous attention.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2017) 29 (3): 435–447.
Published: 01 March 2017
FIGURES
Abstract
View article
PDF
The perceptual system integrates synchronized auditory–visual signals in part to promote individuation of objects in cluttered environments. The processing of auditory–visual synchrony may more generally contribute to cognition by synchronizing internally generated multimodal signals. Reading is a prime example because the ability to synchronize internal phonological and/or lexical processing with visual orthographic processing may facilitate encoding of words and meanings. Consistent with this possibility, developmental and clinical research has suggested a link between reading performance and the ability to compare visual spatial/temporal patterns with auditory temporal patterns. Here, we provide converging behavioral and electrophysiological evidence suggesting that greater behavioral ability to judge auditory–visual synchrony (Experiment 1) and greater sensitivity of an electrophysiological marker of auditory–visual synchrony processing (Experiment 2) both predict superior reading comprehension performance, accounting for 16% and 25% of the variance, respectively. These results support the idea that the mechanisms that detect auditory–visual synchrony contribute to reading comprehension.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2011) 23 (8): 1875–1886.
Published: 01 August 2011
FIGURES
| View All (5)
Abstract
View article
PDF
Frequency-following and frequency-doubling neurons are ubiquitous in both striate and extrastriate visual areas. However, responses from these two types of neural populations have not been effectively compared in humans because previous EEG studies have not successfully dissociated responses from these populations. We devised a light–dark flicker stimulus that unambiguously distinguished these responses as reflected in the first and second harmonics in the steady-state visual evoked potentials. These harmonics revealed the spatial and functional segregation of frequency-following (the first harmonic) and frequency-doubling (the second harmonic) neural populations. Spatially, the first and second harmonics in steady-state visual evoked potentials exhibited divergent posterior scalp topographies for a broad range of EEG frequencies. The scalp maximum was medial for the first harmonic and contralateral for the second harmonic, a divergence not attributable to absolute response frequency. Functionally, voluntary visual–spatial attention strongly modulated the second harmonic but had negligible effects on the simultaneously elicited first harmonic. These dissociations suggest an intriguing possibility that frequency-following and frequency-doubling neural populations may contribute complementary functions to resolve the conflicting demands of attentional enhancement and signal fidelity—the frequency-doubling population may mediate substantial top–down signal modulation for attentional selection, whereas the frequency-following population may simultaneously preserve relatively undistorted sensory qualities regardless of the observer's cognitive state.