Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-1 of 1
Sayak Bhattacharya
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2022) 34 (7): 1274–1286.
Published: 02 June 2022
FIGURES
| View All (8)
Abstract
View article
PDF
Oscillatory dynamics in cortex seem to organize into traveling waves that serve a variety of functions. Recent studies show that propofol, a widely used anesthetic, dramatically alters cortical oscillations by increasing slow-delta oscillatory power and coherence. It is not known how this affects traveling waves. We compared traveling waves across the cortex of non-human primates before, during, and after propofol-induced loss of consciousness (LOC). After LOC, traveling waves in the slow-delta (∼1 Hz) range increased, grew more organized, and traveled in different directions relative to the awake state. Higher frequency (8–30 Hz) traveling waves, by contrast, decreased, lost structure, and switched to directions where the slow-delta waves were less frequent. The results suggest that LOC may be due, in part, to increases in the strength and direction of slow-delta traveling waves that, in turn, alter and disrupt traveling waves in the higher frequencies associated with cognition.