Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-3 of 3
Scott L. Brincat
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2024) 36 (2): 394–413.
Published: 01 February 2024
FIGURES
| View All (6)
Abstract
View article
PDF
A critical component of anesthesia is the loss of sensory perception. Propofol is the most widely used drug for general anesthesia, but the neural mechanisms of how and when it disrupts sensory processing are not fully understood. We analyzed local field potential and spiking recorded from Utah arrays in auditory cortex, associative cortex, and cognitive cortex of nonhuman primates before and during propofol-mediated unconsciousness. Sensory stimuli elicited robust and decodable stimulus responses and triggered periods of stimulus-related synchronization between brain areas in the local field potential of Awake animals. By contrast, propofol-mediated unconsciousness eliminated stimulus-related synchrony and drastically weakened stimulus responses and information in all brain areas except for auditory cortex, where responses and information persisted. However, we found stimuli occurring during spiking Up states triggered weaker spiking responses than in Awake animals in auditory cortex, and little or no spiking responses in higher order areas. These results suggest that propofol's effect on sensory processing is not just because of asynchronous Down states. Rather, both Down states and Up states reflect disrupted dynamics.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2022) 34 (7): 1274–1286.
Published: 02 June 2022
FIGURES
| View All (8)
Abstract
View article
PDF
Oscillatory dynamics in cortex seem to organize into traveling waves that serve a variety of functions. Recent studies show that propofol, a widely used anesthetic, dramatically alters cortical oscillations by increasing slow-delta oscillatory power and coherence. It is not known how this affects traveling waves. We compared traveling waves across the cortex of non-human primates before, during, and after propofol-induced loss of consciousness (LOC). After LOC, traveling waves in the slow-delta (∼1 Hz) range increased, grew more organized, and traveled in different directions relative to the awake state. Higher frequency (8–30 Hz) traveling waves, by contrast, decreased, lost structure, and switched to directions where the slow-delta waves were less frequent. The results suggest that LOC may be due, in part, to increases in the strength and direction of slow-delta traveling waves that, in turn, alter and disrupt traveling waves in the higher frequencies associated with cognition.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2020) 32 (8): 1455–1465.
Published: 01 August 2020
FIGURES
| View All (7)
Abstract
View article
PDF
Large-scale neuronal recording techniques have enabled discoveries of population-level mechanisms for neural computation. However, it is not clear how these mechanisms form by trial-and-error learning. In this article, we present an initial effort to characterize the population activity in monkey prefrontal cortex (PFC) and hippocampus (HPC) during the learning phase of a paired-associate task. To analyze the population data, we introduce the normalized distance, a dimensionless metric that describes the encoding of cognitive variables from the geometrical relationship among neural trajectories in state space. It is found that PFC exhibits a more sustained encoding of the visual stimuli, whereas HPC only transiently encodes the identity of the associate stimuli. Surprisingly, after learning, the neural activity is not reorganized to reflect the task structure, raising the possibility that learning is accompanied by some “silent” mechanism that does not explicitly change the neural representations. We did find partial evidence on the learning-dependent changes for some of the task variables. This study shows the feasibility of using normalized distance as a metric to characterize and compare population-level encoding of task variables and suggests further directions to explore learning-dependent changes in the neural circuits.