Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Scott Makeig
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2021) 33 (3): 482–498.
Published: 01 March 2021
FIGURES
| View All (13)
Abstract
View articletitled, Electroencephalographic Study on Sensory Integration in Visually Induced Postural Sway
View
PDF
for article titled, Electroencephalographic Study on Sensory Integration in Visually Induced Postural Sway
A periodically reversing optic flow animation, experienced while standing, induces an involuntary sway termed visually induced postural sway (VIPS). Interestingly, VIPS is suppressed during light finger touch to a stationary object. Here, we explored whether VIPS is mediated by parietal field activity in the dorsal visual stream as well as by activity in early visual areas, as has been suggested. We performed a mobile brain/body imaging study using high-density electroencephalographic recording from human participants (11 men and 3 women) standing during exposure to periodically reversing optic flow with and without light finger touch to a stable surface. We also performed recording their visuo-postural tracking movements as a typical visually guided movement to explore differences of cortical process of VIPS from the voluntary visuomotor process involving the dorsal stream. In the visuo-postural tracking condition, the participants moved their center of pressure in time with a slowly oscillating (expanding, shrinking) target rectangle. Source-resolved results showed that alpha band (8–13 Hz) activity in the medial and right occipital cortex during VIPS was modulated by the direction and velocity of optic flow and increased significantly during light finger touch. However, source-resolved potentials from the parietal association cortex showed no such modulation. During voluntary postural sway with feedback (but no visual flow) in which the dorsal stream is involved, sensorimotor areas produced more theta band (4–7 Hz) and less beta band (14–35 Hz) activity than during involuntary VIPS. These results suggest that VIPS involves cortical field dynamic changes in the early visual cortex rather than in the posterior parietal cortex of the visual dorsal stream.
Journal Articles
Human Brain Dynamics Accompanying Use of Egocentric and Allocentric Reference Frames during Navigation
UnavailablePublisher: Journals Gateway
Journal of Cognitive Neuroscience (2010) 22 (12): 2836–2849.
Published: 01 December 2010
FIGURES
| View All (5)
Abstract
View articletitled, Human Brain Dynamics Accompanying Use of Egocentric and Allocentric Reference Frames during Navigation
View
PDF
for article titled, Human Brain Dynamics Accompanying Use of Egocentric and Allocentric Reference Frames during Navigation
Maintaining spatial orientation while travelling requires integrating spatial information encountered from an egocentric viewpoint with accumulated information represented within egocentric and/or allocentric reference frames. Here, we report changes in high-density EEG activity during a virtual tunnel passage task in which subjects respond to a postnavigation homing challenge in distinctly different ways—either compatible with a continued experience of the virtual environment from a solely egocentric perspective or as if also maintaining their original entrance orientation, indicating use of a parallel allocentric reference frame. By spatially filtering the EEG data using independent component analysis, we found that these two equal subject subgroups exhibited differences in EEG power spectral modulation during tunnel passages in only a few cortical areas. During tunnel turns, stronger alpha blocking occurred only in or near right primary visual cortex of subjects whose homing responses were compatible with continued use of an egocentric reference frame. In contrast, approaching and during tunnel turns, subjects who responded in a way compatible with use of an allocentric reference frame exhibited stronger alpha blocking of occipito-temporal, bilateral inferior parietal, and retrosplenial cortical areas, all areas implicated by hemodynamic imaging and neuropsychological observation in construction and maintenance of an allocentric reference frame. We conclude that in these subjects, stronger activation of retrosplenial and related cortical areas during turns support a continuous translation of egocentrically experienced visual flow into an allocentric model of their virtual position and movement.