Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Sebastian Jentschke
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2010) 22 (10): 2251–2262.
Published: 01 October 2010
FIGURES
| View All (5)
Abstract
View article
PDF
The music we usually listen to in everyday life consists of either single melodies or harmonized melodies (i.e., of melodies “accompanied” by chords). However, differences in the neural mechanisms underlying melodic and harmonic processing have remained largely unknown. Using EEG, this study compared effects of music-syntactic processing between chords and melodies. In melody blocks, sequences consisted of five tones, the final tone being either regular or irregular ( p = .5). Analogously, in chord blocks, sequences consisted of five chords, the final chord function being either regular or irregular. Melodies were derived from the top voice of chord sequences, allowing a proper comparison between melodic and harmonic processing. Music-syntactic incongruities elicited an early anterior negativity with a latency of approximately 125 msec in both the melody and the chord conditions. This effect was followed in the chord condition, but not in the melody condition, by an additional negative effect that was maximal at approximately 180 msec. Both effects were maximal at frontal electrodes, but the later effect was more broadly distributed over the scalp than the earlier effect. These findings indicate that melodic information (which is also contained in the top voice of chords) is processed earlier and with partly different neural mechanisms than harmonic information of chords.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2008) 20 (11): 1940–1951.
Published: 01 November 2008
Abstract
View article
PDF
Both language and music consist of sequences that are structured according to syntactic regularities. We used two specific event-related brain potential (ERP) components to investigate music-syntactic processing in children: the ERAN (early right anterior negativity) and the N5. The neural resources underlying these processes have been posited to overlap with those involved in the processing of linguistic syntax. Thus, we expected children with specific language impairment (SLI, which is characterized by deficient processing of linguistic syntax) to demonstrate difficulties with music-syntactic processing. Such difficulties were indeed observed in the neural correlates of music-syntactic processing: neither an ERAN nor an N5 was elicited in children with SLI, whereas both components were evoked in age-matched control children with typical language development. Moreover, the amplitudes of ERAN and N5 were correlated with subtests of a language development test. These data provide evidence for a strong interrelation between the language and the music processing system, thereby setting the ground for possible effects of musical training in SLI therapy.