Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-3 of 3
Shintaro Funahashi
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2015) 27 (3): 453–463.
Published: 01 March 2015
FIGURES
| View All (6)
Abstract
View article
PDF
Oscillatory brain activity is known to play an essential role in information processing in working memory. Recent studies have indicated that alpha activity (8–13 Hz) in the parieto-occipital area is strongly modulated in working memory tasks. However, the function of alpha activity in working memory is open to several interpretations, such that alpha activity may be a direct neural correlate of information processing in working memory or may reflect disengagement from information processing in other brain areas. To examine the functional contribution of alpha activity to visuospatial working memory, we introduced visuospatial distractors during a delay period and examined neural activity from the whole brain using magnetoencephalography. The strength of event-related alpha activity was estimated using the temporal spectral evolution (TSE) method. The results were as follows: (1) an increase of alpha activity during the delay period as indicated by elevated TSE curves was observed in parieto-occipital sensors in both the working memory task and a control task that did not require working memory; and (2) an increase of alpha activity during the delay period was not observed when distractors were presented, although TSE curves were constructed only from correct trials. These results indicate that the increase of alpha activity is not directly related to information processing in working memory but rather reflects the disengagement of attention from the visuospatial input.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2008) 20 (4): 563–579.
Published: 01 April 2008
Abstract
View article
PDF
Recent studies show that task-related activity in the dorsolateral prefrontal cortex (DLPFC) is modulated by the quality and quantity of the reward, suggesting that the subject's motivational state affects cognitive operations in the DLPFC. The orbito-frontal cortex (OFC) is a possible source of motivational inputs to the DLPFC. However, it is not well known whether these two areas exhibit similar motivational effects on task-related activity. We compared motivational effects on task-related activity in these areas while a monkey performed an oculomotor delayed-response (ODR) task under two reward schedules. In the ODR-1 schedule, reward was given only after the successful completion of four consecutive trials, whereas in the ODR-2 schedule, reward was given after every correct trial. Task-related activities in both areas showed spatial selectivity. The spatial characteristics of task-related activity remained constant in both schedules. Task-related activity in both areas, especially delay-period activity, was also affected by the reward schedule and the magnitude of the activity gradually increased depending on the proximity of the reward trial in the ODR-1 schedule. More task-related OFC activities were affected by reward schedules, whereas more task-related DLPFC activities were affected by spatial factors and reward schedules. These results indicate that the OFC plays a role in monitoring the proximity of the reward trial and detecting reward delivery, whereas the DLPFC plays a role in performing cognitive operations and integrating cognitive and motivational information. These results also indicate that spatial information and the animal's motivational state independently affect neuronal activity in both areas.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2006) 18 (2): 212–226.
Published: 01 February 2006
Abstract
View article
PDF
Reward-period activity observed in the dorsolateral prefrontal cortex (DLPFC) and the orbitofrontal cortex (OFC) is thought to represent the detection of reward delivery. To investigate whether this activity plays the same role in these areas, we examined this activity under different reward schedules and whether the reward schedule has similar effects on this activity in each of these areas. A monkey performed an oculomotor delayed-response (ODR) task under two reward schedules. In the ODR-1 schedule, the monkey received a large amount of reward only after four successful trials, whereas in the ODR-2 schedule, it received a small amount of reward after every successful trial. Although reward-period activity was observed in both areas, more neurons exhibited this activity in the OFC. Reward-period activity was modulated by the proximity to reward delivery in both areas and this feature was observed more frequently in the OFC. The onset time of this activity also gradually advanced depending on the proximity to reward delivery. Moreover, many OFC neurons with this activity responded to free reward delivery. These results indicate that reward-period activity in the OFC represents the detection of reward delivery and that the gradual change in the magnitude and the onset time of this activity represents the expectation of reward delivery. Similar features of reward-period activity were observed in DLPFC neurons, although a significant number of DLPFC neurons did not respond to free reward delivery and no advance was observed in the onset time of this activity. These results suggest that reward-period activity in the DLPFC participates in whether or not correct performance was achieved. Thus, although similar reward-period activity was observed in both areas, the activity in the OFC represents the detection of reward delivery and is affected by the monkey's motivational state, whereas that in the DLPFC seems to participate in monitoring whether or not the necessary performance is achieved.