Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Sidney J. Segalowitz
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2008) 20 (12): 2250–2262.
Published: 01 December 2008
Abstract
View article
PDF
There is growing consensus that a decline in attentional control is a core aspect of cognitive aging. We used event-related potentials to examine the time course of attentional control in older and younger adults as they attempted to resolve familiarity-based and response-based interference during a working memory task. Accuracy was high for both groups but their neural response to targets and to distracters was markedly different. Young adults' early target selection was evident by 300 msec in a differentiated P3a and they responded to interference by generating a medial frontal negativity (MFN) to distracters by 450 msec that was largest when the need for interference resolution was greatest. Dipole source analyses revealed a temporal coactivation of the inferior frontal and anterior cingulate cortex in younger adults, suggesting that these regions may interact during interference resolution. Older adults did not show the early target-selective P3a effect and failed to subsequently produce the MFN in response to distracting stimuli. In fact, older adults showed a large frontal positivity in place of the MFN but, rather than serve a compensatory role, this frontal activation was associated with poorer behavioral performance. These data suggest that aging interferes with a dynamic interplay of early target selection followed by later suppression of distracter-related neural activity—a process central to the efficient control of attention.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2006) 18 (3): 430–443.
Published: 01 March 2006
Abstract
View article
PDF
Psychologists consider emotion regulation a critical developmental acquisition. Yet, there has been very little research on the neural underpinnings of emotion regulation across childhood and adolescence. We selected two ERP components associated with inhibitory control—the frontal N2 and frontal P3. We recorded these components before, during, and after a negative emotion induction, and compared their amplitude, latency, and source localization over age. Fifty-eight children 5–16 years of age engaged in a simple go/no-go procedure in which points for successful performance earned a valued prize. The temporary loss of all points triggered negative emotions, as confirmed by self-report scales. Both the frontal N2 and frontal P3 decreased in amplitude and latency with age, consistent with the hypothesis of increasing cortical efficiency. Amplitudes were also greater following the emotion induction, only for adolescents for the N2 but across the age span for the frontal P3, suggesting different but overlapping profiles of emotion-related control mechanisms. No-go N2 amplitudes were greater than go N2 amplitudes following the emotion induction at all ages, suggesting a consistent effect of negative emotion on mechanisms of response inhibition. No-go P3 amplitudes were also greater than go P3 amplitudes and they decreased with age, whereas go P3 amplitudes remained low. Finally, source modeling indicated a developmental decline in central-posterior midline activity paralleled by increasing activity in frontal midline regions suggestive of the anterior cingulate cortex. Negative emotion induction corresponded with an additional right ventral prefrontal or temporal generator beginning in middle childhood.