Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-4 of 4
Simon W. Davis
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2025) 37 (1): 155–166.
Published: 02 January 2025
FIGURES
| View All (6)
Abstract
View article
PDF
Although living and nonliving stimuli are known to rely on distinct brain regions during perception, it is largely unknown if their episodic memory encoding mechanisms differ as well. To investigate this issue, we asked participants to encode object pictures (e.g., a picture of a tiger) and to retrieve them later in response to their names (e.g., word “tiger”). For each of four semantic classes (living-animate, living-inanimate, nonliving-large, and nonliving-small), we examined differences in the similarity in activation patterns (neural pattern similarity [NPS]) for subsequently remembered versus forgotten items. Higher NPS for remembered items suggests an advantage of within-class item similarity, whereas lower NPS for remembered items indicates an advantage for item distinctiveness. We expect NPS within class-specific regions to be higher for remembered than for forgotten items. For example, the parahippocampal cortex has a well-known role in scene processing [Aminoff, E. M., Kveraga, K., & Bar, M. The role of the parahippocampal cortex in cognition. Trends in Cognitive Sciences, 17 , 379–390, 2013], and the anterior temporal and inferior frontal gyrus have well-known roles in object processing [Clarke, A., & Tyler, L. K. Object-specific semantic coding in human perirhinal cortex. Journal of Neuroscience, 34 , 4766–4775, 2014]. As such, we expect to see higher NPS for remembered items in these regions pertaining to scenes and objects, respectively. Consistent with this hypothesis, in fusiform, parahippocampal, and retrosplenial regions, higher NPS predicted memory for subclasses of nonliving objects, whereas in the left inferior frontal and left retrosplenial regions, lower NPS predicted memory for subclasses of living objects. Taken together, the results support the idea that subsequent memory depends on a balance of similarity and distinctiveness and demonstrate that the neural mechanisms of episodic encoding differ across semantic categories.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2024) 36 (10): 2137–2165.
Published: 01 October 2024
FIGURES
| View All (5)
Abstract
View article
PDF
Several recent fMRI studies of episodic and working memory representations converge on the finding that visual information is most strongly represented in occipito-temporal cortex during the encoding phase but in parietal regions during the retrieval phase. It has been suggested that this location shift reflects a change in the content of representations, from predominantly visual during encoding to primarily semantic during retrieval. Yet, direct evidence on the nature of encoding and retrieval representations is lacking. It is also unclear how the representations mediating the encoding–retrieval shift contribute to memory performance. To investigate these two issues, in the current fMRI study, participants encoded pictures (e.g., picture of a cardinal) and later performed a word recognition test (e.g., word “cardinal”). Representational similarity analyses examined how visual (e.g., red color) and semantic representations (e.g., what cardinals eat) support successful encoding and retrieval. These analyses revealed two novel findings. First, successful memory was associated with representational changes in cortical location (from occipito-temporal at encoding to parietal at retrieval) but not with changes in representational content (visual vs. semantic). Thus, the representational encoding–retrieval shift cannot be easily attributed to a change in the nature of representations. Second, in parietal regions, stronger representations predicted encoding failure but retrieval success. This encoding–retrieval “flip” in representations mimics the one previously reported in univariate activation studies. In summary, by answering important questions regarding the content and contributions to the performance of the representations mediating the encoding–retrieval shift, our findings clarify the neural mechanisms of this intriguing phenomenon.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2014) 26 (10): 2385–2399.
Published: 01 October 2014
FIGURES
| View All (4)
Abstract
View article
PDF
Voluntary episodic memories require an intentional memory search, whereas involuntary episodic memories come to mind spontaneously without conscious effort. Cognitive neuroscience has largely focused on voluntary memory, leaving the neural mechanisms of involuntary memory largely unknown. We hypothesized that, because the main difference between voluntary and involuntary memory is the controlled retrieval processes required by the former, there would be greater frontal activity for voluntary than involuntary memories. Conversely, we predicted that other components of the episodic retrieval network would be similarly engaged in the two types of memory. During encoding, all participants heard sounds, half paired with pictures of complex scenes and half presented alone. During retrieval, paired and unpaired sounds were presented, panned to the left or to the right. Participants in the involuntary group were instructed to indicate the spatial location of the sound, whereas participants in the voluntary group were asked to additionally recall the pictures that had been paired with the sounds. All participants reported the incidence of their memories in a postscan session. Consistent with our predictions, voluntary memories elicited greater activity in dorsal frontal regions than involuntary memories, whereas other components of the retrieval network, including medial-temporal, ventral occipitotemporal, and ventral parietal regions were similarly engaged by both types of memories. These results clarify the distinct role of dorsal frontal and ventral occipitotemporal regions in predicting strategic retrieval and recalled information, respectively, and suggest that, although there are neural differences in retrieval, involuntary memories share neural components with established voluntary memory systems.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2009) 21 (2): 289–302.
Published: 01 February 2008
Abstract
View article
PDF
Previous research has established that age-related decline occurs in measures of cerebral white matter integrity, but the role of this decline in age-related cognitive changes is not clear. To conclude that white matter integrity has a mediating (causal) contribution, it is necessary to demonstrate that statistical control of the white matter–cognition relation reduces the magnitude of age–cognition relation. In this research, we tested the mediating role of white matter integrity, in the context of a task-switching paradigm involving word categorization. Participants were 20 healthy, community-dwelling older adults (60–85 years), and 20 younger adults (18–27 years). From diffusion tensor imaging tractography, we obtained fractional anisotropy (FA) as an index of white matter integrity in the genu and splenium of the corpus callosum and the superior longitudinal fasciculus (SLF). Mean FA values exhibited age-related decline consistent with a decrease in white matter integrity. From a model of reaction time distributions, we obtained independent estimates of the decisional and nondecisional (perceptual–motor) components of task performance. Age-related decline was evident in both components. Critically, age differences in task performance were mediated by FA in two regions: the central portion of the genu, and splenium–parietal fibers in the right hemisphere. This relation held only for the decisional component and was not evident in the nondecisional component. This result is the first demonstration that the integrity of specific white matter tracts is a mediator of age-related changes in cognitive performance.