Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-4 of 4
Sjoerd J. H. Ebisch
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2020) 32 (9): 1764–1779.
Published: 01 September 2020
FIGURES
| View All (6)
Abstract
View article
PDF
The sense of agency (SoA) refers to a constitutional aspect of the self describing the extent to which individuals feel in control over their actions and consequences thereof. Although the SoA has been associated with mental health and well-being, it is still unknown how interindividual variability in the SoA is embedded in the intrinsic brain organization. We hypothesized that the prospective component of an implicit SoA is associated with brain networks related to SoA and sensorimotor predictions on multiple spatial scales. We replicated previous findings by showing a significant prospective SoA as indicated by intentional binding effects. Then, using task-free fMRI and graph analysis, we analyzed associations between intentional binding effects and the intrinsic brain organization at regional, modular, and whole-brain scales. The results showed that intermodular connections of a frontoparietal module including the premotor cortex, supramarginal gyrus, and dorsal precuneus are associated with individual differences in prospective intentional binding. Notably, prospective intentional binding effects were also related to global brain modularity within a specific structural resolution range. These findings suggest that an implicit SoA generated through sensorimotor predictions relies on the intrinsic organization of the brain connectome on both local and global scales.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2014) 26 (9): 2171–2185.
Published: 01 September 2014
FIGURES
| View All (5)
Abstract
View article
PDF
Anticipating the sensorimotor consequences of an action for both self and other is fundamental for action coordination when individuals socially interact. Somatosensation constitutes an elementary component of social cognition and sensorimotor prediction, but its functions in active social behavior remain unclear. We hypothesized that the somatosensory system contributes to social haptic behavior as evidenced by specific anticipatory activation patterns when touching an animate target (human hand) compared with an inanimate target (fake hand). fMRI scanning was performed during a paradigm that allowed us to isolate the anticipatory representations of active interpersonal touch while controlling for nonsocial sensorimotor processes and possible confounds because of interpersonal relationships or socioemotional valence. Active interpersonal touch was studied both as skin-to-skin contact and as object-mediated touch. The results showed weaker deactivation in primary somatosensory cortex and medial pFC and stronger activation in cerebellum for the animate target, compared with the inanimate target, when intending to touch it with one's own hand. Differently, in anticipation of touching the human hand with an object, anterior inferior parietal lobule and lateral occipital-temporal cortex showed stronger activity. When actually touching a human hand with one's own hand, activation was stronger in medial pFC but weaker in primary somatosensory cortex. The findings provide new insight on the contribution of simulation and sensory prediction mechanisms to active social behavior. They also suggest that literally getting in touch with someone and touching someone by using an object might be approached by an agent as functionally distinct conditions.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2011) 23 (7): 1808–1822.
Published: 01 July 2011
FIGURES
| View All (4)
Abstract
View article
PDF
Previous studies suggested that the observation of other individuals' somatosensory experiences also activates brain circuits processing one's own somatosensory experiences. However, it is unclear whether cortical regions involved with the elementary stages of touch processing are also involved in the automatic coding of the affective consequences of observed touch and to which extent they show overlapping activation for somatosensory experiences of self and others. In order to investigate these issues, in the present fMRI study, healthy participants either experienced touch or watched videos depicting other individuals' inanimate and animate/social touch experiences. Essentially, a distinction can be made between exteroceptive and interoceptive components of touch processing, involved with physical stimulus characteristics and internal feeling states, respectively. Consistent with this distinction, a specific negative modulation was found in the posterior insula by the mere visual perception of other individuals' social or affective cutaneous experiences, compared to neutral inanimate touch. On the other hand, activation in secondary somatosensory and posterior superior temporal regions, strongest for the most intense stimuli, seemed more dependent on the observed physical stimulus characteristics. In contrast to the detected vicarious activation in somatosensory regions, opposite activation patterns for the experience (positive modulation) and observation (negative modulation) of touch suggest that the posterior insula does not reflect a shared representation of self and others' experiences. Embedded in a distributed network of brain regions underpinning a sense of the bodily self, the posterior insula rather appears to differentiate between self and other conditions when affective experiences are implicated.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2008) 20 (9): 1611–1623.
Published: 01 September 2008
Abstract
View article
PDF
Previous studies have shown a shared neural circuitry in the somatosensory cortices for the experience of one's own body being touched and the sight of intentional touch. Using functional magnetic resonance imaging (fMRI), the present study aimed to elucidate whether the activation of a visuotactile mirroring mechanism during touch observation applies to the sight of any touch, that is, whether it is independent of the intentionality of observed touching agent. During fMRI scanning, healthy participants viewed video clips depicting a touch that was intentional or accidental, and occurring between animate or inanimate objects. Analyses showed equal overlapping activation for all the touch observation conditions and the experience of one's own body being touched in the bilateral secondary somatosensory cortex (SII), left inferior parietal lobule (IPL)/supramarginal gyrus, bilateral temporal-occipital junction, and left precentral gyrus. A significant difference between the sight of an intentional touch, compared to an accidental touch, was found in the left primary somatosensory cortex (SI/Brodmann's area [BA] 2). Interestingly, activation in SI/BA 2 significantly correlated with the degree of intentionality of the observed touch stimuli as rated by participants. Our findings show that activation of a visuotactile mirroring mechanism for touch observation might underpin an abstract notion of touch, whereas activation in SI might reflect a human tendency to “resonate” more with a present or assumed intentional touching agent.