Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Soojin Park
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2024) 36 (2): 340–361.
Published: 01 February 2024
FIGURES
| View All (7)
Abstract
View article
PDF
To estimate the size of an indoor space, we must analyze the visual boundaries that limit the spatial extent and acoustic cues from reflected interior surfaces. We used fMRI to examine how the brain processes the geometric size of indoor scenes when various types of sensory cues are presented individually or together. Specifically, we asked whether the size of space is represented in a modality-specific way or in an integrative way that combines multimodal cues. In a block-design study, images or sounds that depict small- and large-sized indoor spaces were presented. Visual stimuli were real-world pictures of empty spaces that were small or large. Auditory stimuli were sounds convolved with different reverberations. By using a multivoxel pattern classifier, we asked whether the two sizes of space can be classified in visual, auditory, and visual–auditory combined conditions. We identified both sensory-specific and multimodal representations of the size of space. To further investigate the nature of the multimodal region, we specifically examined whether it contained multimodal information in a coexistent or integrated form. We found that angular gyrus and the right medial frontal gyrus had modality-integrated representation, displaying sensitivity to the match in the spatial size information conveyed through image and sound. Background functional connectivity analysis further demonstrated that the connection between sensory-specific regions and modality-integrated regions increases in the multimodal condition compared with single modality conditions. Our results suggest that spatial size perception relies on both sensory-specific and multimodal representations, as well as their interplay during multimodal perception.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2010) 22 (12): 2813–2822.
Published: 01 December 2010
FIGURES
Abstract
View article
PDF
Constructing a rich and coherent visual experience involves maintaining visual information that is not perceptually available in the current view. Recent studies suggest that briefly thinking about a stimulus ( refreshing ) can modulate activity in category-specific visual areas. Here, we tested the nature of such perceptually refreshed representations in the parahippocampal place area (PPA) and retrosplenial cortex (RSC) using fMRI. We asked whether a refreshed representation is specific to a restricted view of a scene, or more view-invariant. Participants saw a panoramic scene and were asked to think back to (refresh) a part of the scene after it disappeared. In some trials, the refresh cue appeared twice on the same side (e.g., refresh left–refresh left), and other trials, the refresh cue appeared on different sides (e.g., refresh left–refresh right). A control condition presented halves of the scene twice on same sides (e.g., perceive left–perceive left) or different sides (e.g., perceive left–perceive right). When scenes were physically repeated, both the PPA and RSC showed greater activation for the different-side repetition than the same-side repetition, suggesting view-specific representations. When participants refreshed scenes, the PPA showed view-specific activity just as in the physical repeat conditions, whereas RSC showed an equal amount of activation for different- and same-side conditions. This finding suggests that in RSC, refreshed representations were not restricted to a specific view of a scene, but extended beyond the target half into the entire scene. Thus, RSC activity associated with refreshing may provide a mechanism for integrating multiple views in the mind.