Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-2 of 2
Sori Baek
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2022) 34 (5): 766–775.
Published: 31 March 2022
FIGURES
| View All (4)
Abstract
View article
PDF
Despite the abundance of behavioral evidence showing the interaction between attention and prediction in infants, the neural underpinnings of this interaction are not yet well understood. The endogenous attentional function in adults have been largely localized to the frontoparietal network. However, resting-state and neuroanatomical investigations have found that this frontoparietal network exhibits a protracted developmental trajectory and involves weak and unmyelinated long-range connections early in infancy. Can this developmentally nascent network still be modulated by predictions? Here, we conducted the first investigation of infant frontoparietal network engagement as a function of the predictability of visual events. Using functional near-infrared spectroscopy, the hemodynamic response in the frontal, parietal, and occipital lobes was analyzed as infants watched videos of temporally predictable or unpredictable sequences. We replicated previous findings of cortical signal attenuation in the frontal and sensory cortices in response to predictable sequences and extended these findings to the parietal lobe. We also estimated background functional connectivity (i.e., by regressing out task-evoked responses) to reveal that frontoparietal functional connectivity was significantly greater during predictable sequences compared to unpredictable sequences, suggesting that this frontoparietal network may underlie how the infant brain communicates predictions. Taken together, our results illustrate that temporal predictability modulates the activation and connectivity of the frontoparietal network early in infancy, supporting the notion that this network may be functionally available early in life despite its protracted developmental trajectory.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2018) 30 (9): 1315–1322.
Published: 01 September 2018
FIGURES
Abstract
View article
PDF
Past research has identified anatomically specific sites within the posterior inferior temporal gyrus (PITG) and the intraparietal sulcus (IPS) areas that are engaged during arithmetic processing. Although a small region of the PITG (known as the number form area) is selectively engaged in the processing of numerals, its surrounding area is activated during both digit and number word processing. In eight participants with intracranial electrodes, we compared the timing and selectivity of electrophysiological responses in the number form area-surround and IPS regions during arithmetic processing with digits and number words. Our recordings revealed stronger electrophysiological responses in the high-frequency broadband range in both regions to digits than number words, with the difference that number words elicited delayed activity in the IPS but not PITG. Our findings of distinct profiles of responses in the PITG and the IPS to digits compared with number words provide novel information that is relevant to existing theoretical models of mathematical cognition.