Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-5 of 5
Srikantan S. Nagarajan
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2020) 32 (8): 1497–1507.
Published: 01 August 2020
FIGURES
| View All (6)
Abstract
View article
PDF
Little is known about language impairment in brain tumor patients, especially in the presurgical phase. Impairment in this population may be missed because standardized tests fail to capture mild deficits. Additionally, neuroplasticity may also contribute to minimizing language impairments. We examined 14 presurgical patients with brain tumors in the language-dominant hemisphere using magnetoencephalography (MEG) while they performed a demanding picture–word interference task, that is, participants name pictures while ignoring distractor words. Brain tumor patients had behavioral picture-naming effects typically observed in healthy controls. The MEG responses also showed the expected pattern in its timing and amplitude modulation typical of controls, but with an altered spatial distribution of right hemisphere sources, in contrast to the classic left hemisphere source found in healthy individuals. This finding supports tumor-induced neural reorganization of language before surgery. Crucially, the use of electrophysiology allowed us to show the “same” neuronal response in terms of its timing and amplitude modulation in the right hemisphere, supporting the hypothesis that the processes performed by the right hemisphere following reorganization are similar in nature to those (previously) performed by the left hemisphere. We also identified one participant with a fast-growing tumor affecting large parts of critical language areas and underlying ventral and dorsal white matter tracts who showed a deviant pattern in behavior and in the MEG event-related responses. In conclusion, our results attest to the validity of using a demanding picture-naming task in presurgical patients and provide evidence for neuroplasticity, with the right hemisphere performing similar computations as the left hemisphere typically performs.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2011) 23 (6): 1437–1446.
Published: 01 June 2011
FIGURES
| View All (5)
Abstract
View article
PDF
Selective processing of task-relevant stimuli is critical for goal-directed behavior. We used electrocorticography to assess the spatio-temporal dynamics of cortical activation during a simple phonological target detection task, in which subjects press a button when a prespecified target syllable sound is heard. Simultaneous surface potential recordings during this task revealed a highly ordered temporal progression of high gamma (HG, 70–200 Hz) activity across the lateral hemisphere in less than 1 sec. The sequence demonstrated concurrent regional sensory processing of speech syllables in the posterior superior temporal gyrus (STG) and speech motor cortex, and then transitioned to sequential task-dependent processing from prefrontal cortex (PFC), to the final motor response in the hand sensorimotor cortex. STG activation was modestly enhanced for target over nontarget sounds, supporting a selective gain mechanism in early sensory processing, whereas PFC was entirely selective to targets, supporting its role in guiding response behavior. These results reveal that target detection is not a single cognitive event, but rather a process of progressive target selectivity that involves large-scale rapid parallel and serial processing in sensory, cognitive, and motor structures to support goal-directed human behavior.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2009) 21 (4): 791–802.
Published: 01 April 2009
Abstract
View article
PDF
Sensory responses to stimuli that are triggered by a self-initiated motor act are suppressed when compared with the response to the same stimuli triggered externally, a phenomenon referred to as motor-induced suppression (MIS) of sensory cortical feedback. Studies in the somatosensory system suggest that such suppression might be sensitive to delays between the motor act and the stimulus onset, and a recent study in the auditory system suggests that such MIS develops rapidly. In three MEG experiments, we characterize the properties of MIS by examining the M100 response from the auditory cortex to a simple tone triggered by a button press. In Experiment 1, we found that MIS develops for zero delays but does not generalize to nonzero delays. In Experiment 2, we found that MIS developed for 100-msec delays within 300 trials and occurs in excess of auditory habituation. In Experiment 3, we found that unlike MIS for zero delays, MIS for nonzero delays does not exhibit sensitivity to sensory, delay, or motor-command changes. These results are discussed in relation to suppression to self-produced speech and a general model of sensory motor processing and control.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2007) 19 (7): 1163–1174.
Published: 01 July 2007
Abstract
View article
PDF
The time-order error (TOE) refers to the influence of presentation order on performance accuracy in a discrimination task. Despite it being a well-documented perceptual bias, the underlying mechanisms have not been studied. In this study, observers were trained on a two-interval forced-choice procedure. The stimuli presented for discrimination were a standard, consisting of four tones presented at a 5-Hz rate, and targets, consisting of various rates higher than 5 Hz. Psychometric functions were measured for discrimination of the trained standard and targets, a novel standard of 13 Hz with higher target rates; and the trained 5 Hz standard with novel targets with rates below 5 Hz. Discrimination did not improve with training; in fact, accuracy declined when standard was presented in the first interval during the session, resulting in a TOE. The TOE was specific to the 5-Hz standard generalizing to the novel targets slower than 5 Hz, but not to the 13-Hz STANDARD. Analysis of the event-related magnetic field responses (ERFs) revealed a waveform to the whole stimulus, rather than to each tone in the train. Although ERFs in the second interval were attenuated independent of stimulus type, the M300 component in the second interval was attenuated only when the standard was first, but remained of equivalent magnitude when the standard was second. This was observed only in the two 5-Hz conditions. Combined, these results suggest that the TOE reflects the emergence of an internal representation of the standard, and that the M300 is potentially a neural correlate of plasticity.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2002) 14 (8): 1125–1138.
Published: 15 November 2002
Abstract
View article
PDF
Several behavioral and brain imaging studies have demonstrated a significant interaction between speech perception and speech production. In this study, auditory cortical responses to speech were examined during self-production and feedback alteration. Magnetic field recordings were obtained from both hemispheres in subjects who spoke while hearing controlled acoustic versions of their speech feedback via earphones. These responses were compared to recordings made while subjects listened to a tape playback of their production. The amplitude of tape playback was adjusted to match the amplitude of self-produced speech. Recordings of evoked responses to both self-produced and tape-recorded speech were obtained free of movement-related artifacts. Responses to self-produced speech were weaker than were responses to tape-recorded speech. Responses to tones were also weaker during speech production, when compared with responses to tones recorded in the presence of speech from tape playback. However, responses evoked by gated noise stimuli did not differ for recordings made during self-produced speech versus recordings made during tape-recorded speech playback. These data suggest that during speech production, the auditory cortex (1) attenuates its sensitivity and (2) modulates its activity as a function of the expected acoustic feedback.