Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-3 of 3
Stefan Köhler
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2023) 35 (5): 900–917.
Published: 01 May 2023
FIGURES
| View All (8)
Abstract
View article
PDF
Pattern separation, the creation of distinct representations of similar inputs, and statistical learning, the rapid extraction of regularities across multiple inputs, have both been linked to hippocampal processing. It has been proposed that there may be functional differentiation within the hippocampus, such that the trisynaptic pathway (entorhinal cortex > dentate gyrus > CA3 > CA1) supports pattern separation, whereas the monosynaptic pathway (entorhinal cortex > CA1) supports statistical learning. To test this hypothesis, we investigated the behavioral expression of these two processes in B. L., an individual with highly selective bilateral lesions in the dentate gyrus that presumably disrupt the trisynaptic pathway. We tested pattern separation with two novel auditory versions of the continuous mnemonic similarity task, requiring the discrimination of similar environmental sounds and trisyllabic words. For statistical learning, participants were exposed to a continuous speech stream made up of repeating trisyllabic words. They were then tested implicitly through a RT-based task and explicitly through a rating task and a forced-choice recognition task. B. L. showed significant deficits in pattern separation on the mnemonic similarity tasks and on the explicit rating measure of statistical learning. In contrast, B. L. showed intact statistical learning on the implicit measure and the familiarity-based forced-choice recognition measure. Together, these results suggest that dentate gyrus integrity is critical for high-precision discrimination of similar inputs, but not the implicit expression of statistical regularities in behavior. Our findings offer unique new support for the view that pattern separation and statistical learning rely on distinct neural mechanisms.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2006) 18 (12): 2167–2176.
Published: 01 November 2006
Abstract
View article
PDF
Learning to control movements in different dynamic environments is marked by proactive interference; learning a first skill interferes with the subsequent learning of a second one. The neural basis of this effect is poorly understood. We tested the idea that proactive interference results from persisting neural representations of previously learned skills in the primary motor cortex (M1). We used repetitive transcranial magnetic stimulation (rTMS) of M1 to disrupt retention of a recently learned motor skill. If interference results from the retention of this skill then its disruption should be associated with reduced interference. Subjects reached to targets while interacting with a robotic arm that applied force fields to the limb. Fifteen minutes of 1-Hz rTMS to M1 impaired the retention of a first force field, and more importantly, reduced proactive interference when subjects learned a second one. Our findings suggest that retention and interference are linked at the level of M1.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2004) 16 (2): 178–188.
Published: 01 March 2004
Abstract
View article
PDF
Successful recovery of words from episodic memory relies strongly on semantic processes at the time of encoding. Evidence from several functional magnetic resonance imaging (fMRI) studies has shown that changes in neural activity in the left inferior prefrontal cortex (LIPFC) during semantic encoding predict subsequent memory performance. This evidence has been taken to suggest that LIPFC plays a critical role in memory formation. Functional neuroimaging findings, however, do not establish a causal brain-behavior relationship. To determine whether there is a causal link between LIPFC involvement at encoding and subsequent success in memory performance, we conducted a two-part study in which we first used fMRI to localize encoding-related activation in LIPFC and then employed repetitive transcranial magnetic stimulation (rTMS) to manipulate neural processes in LIPFC during semantic encoding. To demonstrate the neuroanatomical specificity of any observed effect and to control for nonspecific rTMS side effects, we also stimulated neural processes in two control sites. Using frameless stereotaxy, we positioned the stimulation coil to target (1) the LIPF region that was activated during fMRI (mean xyz = −48 35 5); (2) the homologous righthemisphere region; and (3) an additional left parietal control site. At each site, “stimulated” items (600 msec of 7-Hz rTMS with Cadwell Round Coil) were intermixed with items presented without concurrent stimulation. Subsequently, subjects performed a recognition memory task for the words encountered. We found support for the predicted causal brain-behavior relationship, which was specific to LIPFC. When comparing recognition scores for stimulated items, normalized for variations in performance on nonstimulated trials, we found that words encoded under LIPFC stimulation were subsequently recognized with higher accuracy than words encoded under stimulation in the two cortical control sites. By contrast, no performance difference emerged when the two control sites were compared with each other. Based on additional analyses of the rTMS effects observed directly at the time of encoding (i.e., on semantic-decision performance), we suggest that LIPFC stimulation may have produced its effect on recognition memory, at least in part, through the triggering of more extensive processing of the stimulated items and an ensuing gain in item distinctiveness. Physiological processes of facilitation probably also contributed to the observed memory benefit. Together, these findings suggest that LIPFC does play a causal role in episodic memory formation.