Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Stefania Bracci
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2021) 33 (8): 1487–1503.
Published: 01 July 2021
FIGURES
| View All (6)
Abstract
View article
PDF
Selecting hand actions to manipulate an object is affected both by perceptual factors and by action goals. Affordances may contribute to “stimulus–response” congruency effects driven by habitual actions to an object. In previous studies, we have demonstrated an influence of the congruency between hand and object orientations on response times when reaching to turn an object, such as a cup. In this study, we investigated how the representation of hand postures triggered by planning to turn a cup was influenced by this congruency effect, in an fMRI scanning environment. Healthy participants were asked to reach and turn a real cup that was placed in front of them either in an upright orientation or upside–down. They were instructed to use a hand orientation that was either congruent or incongruent with the cup orientation. As expected, the motor responses were faster when the hand and cup orientations were congruent. There was increased activity in a network of brain regions involving object-directed actions during action planning, which included bilateral primary and extrastriate visual, medial, and superior temporal areas, as well as superior parietal, primary motor, and premotor areas in the left hemisphere. Specific activation of the dorsal premotor cortex was associated with hand–object orientation congruency during planning and prior to any action taking place. Activity in that area and its connectivity with the lateral occipito-temporal cortex increased when planning incongruent (goal-directed) actions. The increased activity in premotor areas in trials where the orientation of the hand was incongruent to that of the object suggests a role in eliciting competing representations specified by hand postures in lateral occipito-temporal cortex.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2013) 25 (8): 1225–1234.
Published: 01 August 2013
FIGURES
| View All (4)
Abstract
View article
PDF
Previous studies have provided evidence for a tool-selective region in left lateral occipitotemporal cortex (LOTC). This region responds selectively to pictures of tools and to characteristic visual tool motion. The present human fMRI study tested whether visual experience is required for the development of tool-selective responses in left LOTC. Words referring to tools, animals, and nonmanipulable objects were presented auditorily to 14 congenitally blind and 16 sighted participants. Sighted participants additionally viewed pictures of these objects. In whole-brain group analyses, sighted participants showed tool-selective activity in left LOTC in both visual and auditory tasks. Importantly, virtually identical tool-selective LOTC activity was found in the congenitally blind group performing the auditory task. Furthermore, both groups showed equally strong tool-selective activity for auditory stimuli in a tool-selective LOTC region defined by the picture-viewing task in the sighted group. Detailed analyses in individual participants showed significant tool-selective LOTC activity in 13 of 14 blind participants and 14 of 16 sighted participants. The strength and anatomical location of this activity were indistinguishable across groups. Finally, both blind and sighted groups showed significant resting state functional connectivity between left LOTC and a bilateral frontoparietal network. Together, these results indicate that tool-selective activity in left LOTC develops without ever having seen a tool or its motion. This finding puts constraints on the possible role that this region could have in tool processing and, more generally, provides new insights into the principles shaping the functional organization of OTC.