Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-3 of 3
Steffen Gais
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2014) 26 (1): 143–153.
Published: 01 January 2014
FIGURES
Abstract
View article
PDF
There is robust evidence that sleep facilitates procedural memory consolidation. The exact mechanisms underlying this process are still unclear. We tested whether an active replay of prior experience can underlie sleep effects on procedural memory. Participants learned a finger-tapping task in which key presses were associated with tones during practice. Later, during a consolidation interval spent either sleeping or awake, we presented auditory cues to reactivate part of the learned sequence. We show that reactivation strengthens procedural memory formation during sleep, but not during wakefulness. The improvement was restricted to those finger transitions that were cued. Thus, reactivation is a very specific process underpinning procedural memory consolidation. When comparing periods of sleep with and without reactivation, we find that it is not the time spent in a specific stage of sleep per se, but rather the occurrence of reactivation that mediates the effect of sleep on memory consolidation. Our data show that longer sleep time as well as additional reactivation by cueing during sleep can enhance later memory performance.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2011) 23 (9): 2582–2592.
Published: 01 September 2011
FIGURES
Abstract
View article
PDF
There is a long-standing assumption that low noradrenergic activity during sleep reflects mainly the low arousal during this brain state. Nevertheless, recent research has demonstrated that the locus coeruleus, which is the main source of cortical noradrenaline, displays discrete periods of intense firing during non-REM sleep, without any signs of awakening. This transient locus coeruleus activation during sleep seems to occur in response to preceding learning-related episodes. In the present study, we manipulate noradrenergic activity during sleep in humans with either the α2-autoreceptor agonist clonidine or the noradrenaline reuptake inhibitor reboxetine. We show that reducing noradrenergic activity during sleep, but not during wakefulness, impairs subsequent memory performance in an odor recognition task. Increasing noradrenergic availability during sleep, in contrast, enhances memory retention. We conclude that noradrenergic activity during non-REM sleep interacts with other sleep-related mechanisms to functionally contribute to off-line memory consolidation.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2006) 18 (5): 793–802.
Published: 01 May 2006
Abstract
View article
PDF
High central nervous system levels of acetylcholine (ACh) are commonly regarded as crucial for learning and memory, and a decline in cholinergic neurotransmission is associated with Alzheimer's dementia. However, recent findings revealed exceptions to this rule: The low ACh tone characterizing slowwave sleep (SWS) has proven necessary for consolidation of hippocampus-dependent declarative memories during this sleep stage. Such observations, together with recent models of a hippocampal-neocortical dialogue underlying systems memory consolidation, suggest that high levels of ACh support memory encoding, whereas low levels facilitate consolidation. We tested this hypothesis in human subjects by blocking cholinergic neurotransmission during wakefulness, starting 30 min after learning. Subjects received the muscarinic antagonist scopolamine (4 µg/kg bodyweight intravenously) and the nicotinic antagonist mecamylamine (5 mg orally). Compared to placebo, combined muscarinic and nicotinic receptor blockade significantly improved consolidation of declarative memories tested 10 hr later, but simultaneously impaired acquisition of similar material. Consolidation of procedural memories, which are not dependent on hippocampal functioning, was unaffected. Neither scopolamine nor mecamylamine alone enhanced declarative memory consolidation. Our findings support the notion that ACh acts as a switch between modes of acquisition and consolidation. We propose that the natural shift in central nervous system cholinergic tone from high levels during wakefulness to minimal levels during SWS optimizes declarative memory consolidation during a period with no need for new memory encoding.