Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Stephen G. Lomber
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2019) 31 (8): 1091–1109.
Published: 01 August 2019
FIGURES
| View All (4)
Abstract
View article
PDF
Over the past decade, there has been an unprecedented level of interest and progress into understanding visual processing in the brain of the deaf. Specifically, when the brain is deprived of input from one sensory modality (such as hearing), it often compensates with supranormal performance in one or more of the intact sensory systems (such as vision). Recent psychophysical, functional imaging, and reversible deactivation studies have converged to define the specific visual abilities that are enhanced in the deaf, as well as the cortical loci that undergo crossmodal plasticity in the deaf and are responsible for mediating these superior visual functions. Examination of these investigations reveals that central visual functions, such as object and facial discrimination, and peripheral visual functions, such as motion detection, visual localization, visuomotor synchronization, and Vernier acuity (measured in the periphery), are specifically enhanced in the deaf, compared with hearing participants. Furthermore, the cortical loci identified to mediate these functions reside in deaf auditory cortex: BA 41, BA 42, and BA 22, in addition to the rostral area, planum temporale, Te3, and temporal voice area in humans; primary auditory cortex, anterior auditory field, dorsal zone of auditory cortex, auditory field of the anterior ectosylvian sulcus, and posterior auditory field in cats; and primary auditory cortex and anterior auditory field in both ferrets and mice. Overall, the findings from these studies show that crossmodal reorganization in auditory cortex of the deaf is responsible for the superior visual abilities of the deaf.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2014) 26 (9): 1918–1927.
Published: 01 September 2014
FIGURES
| View All (4)
Abstract
View article
PDF
The abilities of switching between and maintaining task rules are fundamental aspects of goal-oriented behavior. The PFC is thought to implement the cognitive processes underling such rule-based behavior, but the specific contributions of the several cytoarchitecturally distinct subfields of PFC remain poorly understood. Here, we used bilateral cryogenic deactivation to investigate the relative contributions of two regions of the dorsolateral PFC (dlPFC)—the inferior dlPFC (idlPFC) area, consisting of the cortex lining the caudal principal sulcus, and the dorsally adjacent superior dlPFC (sdlPFC)—to different aspects of rule-based behavior. Macaque monkeys performed two variants of a task that required them to alternate unpredictably between eye movements toward (prosaccade) or away from (antisaccade) a visual stimulus. In one version of the task, the current rule was overtly cued. In the second, the task rule was uncued, and successful performance required the animals to detect rule changes on the basis of reward outcome and subsequently maintain the current task rule within working memory. Deactivation of the idlPFC impaired the monkeys' ability to perform pro- and antisaccades in the uncued task only. In contrast, deactivation of the sdlPFC had no effect on performance in either task. Combined deactivation of idlPFC and sdlPFC impaired performance on antisaccade, but not prosaccade, trials in both task variants. These results suggest that the idlPFC is required for mnemonic processes involved in maintenance of task rules, whereas both idlPFC and sdlPFC together are necessary for the deployment of the cognitive control required to perform antisaccades. Together, these data support the concept of a functional specialization of subregions within the dlPFC for rule-guided behavior.