Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-8 of 8
Stephen M. Kosslyn
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2008) 20 (1): 182–192.
Published: 01 January 2008
Abstract
View article
PDF
Parapsychology is the scientific investigation of apparently paranormal mental phenomena (such as telepathy, i.e., “mind reading”), also known as psi. Despite widespread public belief in such phenomena and over 75 years of experimentation, there is no compelling evidence that psi exists. In the present study, functional magnetic resonance imaging (fMRI) was used in an effort to document the existence of psi. If psi exists, it occurs in the brain, and hence, assessing the brain directly should be more sensitive than using indirect behavioral methods (as have been used previously). To increase sensitivity, this experiment was designed to produce positive results if telepathy, clairvoyance (i.e., direct sensing of remote events), or precognition (i.e., knowing future events) exist. Moreover, the study included biologically or emotionally related participants (e.g., twins) and emotional stimuli in an effort to maximize experimental conditions that are purportedly conducive to psi. In spite of these characteristics of the study, psi stimuli and non-psi stimuli evoked indistinguishable neuronal responses—although differences in stimulus arousal values of the same stimuli had the expected effects on patterns of brain activation. These findings are the strongest evidence yet obtained against the existence of paranormal mental phenomena.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2000) 12 (Supplement 2): 15–23.
Published: 01 November 2000
Abstract
View article
PDF
Although it is largely accepted that visual-mental imagery and perception draw on many of the same neural structures, the existence and nature of neural processing in the primary visual cortex (or area V1) during visual imagery remains controversial. We tested two general hypotheses: The first was that V1 is activated only when images with many details are formed and used, and the second was that V1 is activated whenever images are formed, even if they are not necessarily used to perform a task. We used event-related functional magnetic resonance imaging (ER-fMRI) to detect and characterize the activity in the calcarine sulcus (which contains the primary visual cortex) during single instances of mental imagery. The results revealed reproducible transient activity in this area whenever participants generated or evaluated a mental image. This transient activity was strongly enhanced when participants evaluated characteristics of objects, whether or not details actually needed to be extracted from the image to perform the task. These results show that visual imagery processing commonly involves the earliest stages of the visual system.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (1996) 8 (1): 78–82.
Published: 01 January 1996
Abstract
View article
PDF
Sixteen subjects closed their eyes and visualized uppercase letters of the alphabet at two sizes, as small as possible or as large as possible while remaining “visible.” Subjects evaluated a shape characteristic of each letter (e.g., whether it has any curved lines), and responded as quickly as possible. Cerebral blood flow was normalized to the same value for each subject, and relative blood flow was computed for a set of regions of interest. The mean response time for each subject in the task was regressed onto the blood flow values. Blood flow in area 17 was negatively correlated with response time (r = -0.65), as was blood flow in area 19 (r = -0.66), whereas blood flow in the inferior parietal lobe was positively correlated with response time (r = 0.54). The first two effects persisted even when variance due to the other correlations was removed. These findings suggest that individual differences in the activation of specific brain loci are directly related to performance of tasks that rely on processing in those loci.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (1994) 6 (3): 297–303.
Published: 01 July 1994
Abstract
View article
PDF
Stephen M. Kosslyn is Professor of Psychology at Harvard University and an Associate Psychologist in the Department of Neurology at the Massachusetts General Hospital. He received his B.A. in 1970 from UCLA and his Ph.D. from Stanford University in 1974, both in psychology, and taught at Johns Hopkins, Harvard, and Brandeis Universities before joining the Harvard Faculty as Professor of Psychology in 1983. His work focuses on the nature of visual mental imagery and high-level vision, as well as applications of psychological principles to visual display design. He has published over 125 papers on these topics, co-edited five books, and authored or co-authored five books. His books include Image and Mind (1980), Ghosts in the Mind's Machine (1983), Wet Mind: The New Cognitive Neuroscience (with 0. Koenig, 1992), Elements of Graph Design (1994), and Image and Brain: The Resolution of the Imagery Debate (1994). Dr. Kosslyn has received numerous honors, including the National Academy of Sciences Initiatives in Research Award, is currently on the editorial boards of many professional journals, and has served on several National Research Council committees to advise the government on new technologies.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (1993) 5 (3): 263–287.
Published: 01 July 1993
Abstract
View article
PDF
Cerebral blood flow was measured using positron emission tomography (PET) in three experiments while subjects performed mental imagery or analogous perceptual tasks. In Experiment 1, the subjects either visualized letters in grids and decided whether an X mark would have fallen on each letter if it were actually in the grid, or they saw letters in grids and decided whether an X mark fell on each letter. A region identified as part of area 17 by the Talairach and Tournoux (1988) atlas, in addition to other areas involved in vision, was activated more in the mental imagery task than in the perception task. In Experiment 2, the identical stimuli were presented in imagery and baseline conditions, but subjects were asked to form images only in the imagery condition; the portion of area 17 that was more active in the imagery condition of Experiment 1 was also more activated in imagery than in the baseline condition, as was part of area 18. Subjects also were tested with degraded perceptual stimuli, which caused visual cortex to be activated to the same degree in imagery and perception. In both Experiments 1 and 2, however, imagery selectively activated the extreme anterior part of what was identified as area 17, which is inconsistent with the relatively small size of the imaged stimuli. These results, then, suggest that imagery may have activated another region just anterior to area 17. In Experiment 3, subjects were instructed to close their eyes and evaluate visual mental images of upper case letters that were formed at a small size or large size. The small mental images engendered more activation in the posterior portion of visual cortex, and the large mental images engendered more activation in anterior portions of visual cortex. This finding is strong evidence that imagery activates topographically mapped cortex. The activated regions were also consistent with their being localized in area 17. Finally, additional results were consistent with the existence of two types of imagery, one that rests on allocating attention to form a pattern and one that rests on activating stored visual memories.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (1992) 4 (1): 96–105.
Published: 01 January 1992
Abstract
View article
PDF
We distinguish between strong and weak cognitive neuropsychology, with the former attempting to provide direct insights into the nature of information processing and the latter having the more modest goal of providing constraints on such theories. We argue that strong cognitive neuropsychology, although possible, is unlikely to succeed and that researchers will fare better by combining behavioral, computational, and neural investigations. Arguments offered by Caramazza (1992) in defense of strong neuropsychology are analyzed, and examples are offered to illustrate the power of alternative points of view.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (1990) 2 (2): 141–155.
Published: 01 April 1990
Abstract
View article
PDF
A subset of visually sensitive neurons in the parietal lobe apparently can encode the locations of stimuli, whereas visually sensitive neurons in the inferotemporal cortex (area IT) cannot. This finding is puzzling because both sorts of neurons have large receptive fields, and yet location can be encoded in one case, but not in the other. The experiments reported here investigated the hypothesis that a crucial difference between the IT and parietal neurons is the spatial distribution of their response profiles. In particular, IT neurons typically respond maximally when stimuli are presented at the fovea, whereas parietal neurons do not. We found that a parallel-distributed-processing network could map a point in an array to a coordinate representation more easily when a greater proportion of its input units had response peaks off the center of the input array. Furthermore, this result did not depend on potentially implausible assumptions about the regularity of the overlap in receptive fields or the homogeneity of the response profiles of different units. Finally, the internal representations formed within the network had receptive fields resembling those found in area 7a of the parietal lobe.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (1989) 1 (2): 171–186.
Published: 01 April 1989
Abstract
View article
PDF
In the primate visual system, the identification of objects and the processing of spatial information are accomplished by different cortical pathways. The computational properties of this “two-systems” design were explored by constructing simplifying connectionist models. The models were designed to simultaneously classify and locate shapes that could appear in multiple positions in a matrix, and the ease of forming representations of the two kinds of information was measured. Some networks were designed so that all hidden nodes projected to all output nodes, whereas others had the hidden nodes split into two groups, with some projecting to the output nodes that registered shape identity and the remainder projecting to the output nodes that registered location. The simulations revealed that splitting processing into separate streams for identifying and locating a shape led to better performance only under some circumstances. Provided that enough computational resources were available in both streams, split networks were able to develop more efficient internal representations, as revealed by detailed analyses of the patterns of weights between connections.