Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-15 of 15
Steven A. Hillyard
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2019) 31 (3): 377–389.
Published: 01 March 2019
FIGURES
| View All (4)
Abstract
View article
PDF
Action video game players (AVGPs) outperform non–action video game players (NAVGPs) on a range of perceptual and attentional tasks. Although several studies have reported neuroplastic changes within the frontoparietal networks of attention in AVGPs, little is known about possible changes in attentional modulation in low-level visual areas. To assess the contribution of these different levels of neural processing to the perceptual and attentional enhancements noted in AVGPs, visual event-related potentials (ERPs) were recorded from 14 AVGPs and 14 NAVGPs during a target discrimination task that required participants to attend to rapid sequences of Gabor patches under either focused or divided attention conditions. AVGPs responded faster to target Gabors in the focused attention condition compared with the NAVGPs. Correspondingly, ERPs to standard Gabors revealed a more pronounced negativity in the time range of the parietally generated anterior N1 component in AVGPs compared with NAVGPs during focused attention. In addition, the P2 component of the visual ERP was more pronounced in AVGPs than in NAVGPs over the hemisphere contralateral to the stimulus position in response to standard Gabors. Contrary to predictions, however, attention-modulated occipital components generated in the low-level extrastriate visual pathways, including the P1 and posterior N1, showed no significant group differences. Thus, the main neural signature of enhanced perceptual and attentional control functions in AVGPs appears linked to an attention-dependent parietal process, indexed by the anterior N1 component, and possibly to more efficient higher-order perceptual processing, indexed by the P2 component.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2016) 28 (3): 433–445.
Published: 01 March 2016
FIGURES
| View All (5)
Abstract
View article
PDF
Recent findings suggest that a salient, irrelevant sound attracts attention to its location involuntarily and facilitates processing of a colocalized visual event [McDonald, J. J., Störmer, V. S., Martinez, A., Feng, W. F., & Hillyard, S. A. Salient sounds activate human visual cortex automatically. Journal of Neuroscience, 33, 9194–9201, 2013]. Associated with this cross-modal facilitation is a sound-evoked slow potential over the contralateral visual cortex termed the auditory-evoked contralateral occipital positivity (ACOP). Here, we further tested the hypothesis that a salient sound captures visual attention involuntarily by examining sound-evoked modulations of the occipital alpha rhythm, which has been strongly associated with visual attention. In two purely auditory experiments, lateralized irrelevant sounds triggered a bilateral desynchronization of occipital alpha-band activity (10–14 Hz) that was more pronounced in the hemisphere contralateral to the sound's location. The timing of the contralateral alpha-band desynchronization overlapped with that of the ACOP (∼240–400 msec), and both measures of neural activity were estimated to arise from neural generators in the ventral-occipital cortex. The magnitude of the lateralized alpha desynchronization was correlated with ACOP amplitude on a trial-by-trial basis and between participants, suggesting that they arise from or are dependent on a common neural mechanism. These results support the hypothesis that the sound-induced alpha desynchronization and ACOP both reflect the involuntary cross-modal orienting of spatial attention to the sound's location.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2014) 26 (12): 2682–2690.
Published: 01 December 2014
FIGURES
Abstract
View article
PDF
A growing body of research suggests that the predictive power of working memory (WM) capacity for measures of intellectual aptitude is due to the ability to control attention and select relevant information. Crucially, attentional mechanisms implicated in controlling access to WM are assumed to be domain-general, yet reports of enhanced attentional abilities in individuals with larger WM capacities are primarily within the visual domain. Here, we directly test the link between WM capacity and early attentional gating across sensory domains, hypothesizing that measures of visual WM capacity should predict an individual's capacity to allocate auditory selective attention. To address this question, auditory ERPs were recorded in a linguistic dichotic listening task, and individual differences in ERP modulations by attention were correlated with estimates of WM capacity obtained in a separate visual change detection task. Auditory selective attention enhanced ERP amplitudes at an early latency (ca. 70–90 msec), with larger P1 components elicited by linguistic probes embedded in an attended narrative. Moreover, this effect was associated with greater individual estimates of visual WM capacity. These findings support the view that domain-general attentional control mechanisms underlie the wide variation of WM capacity across individuals.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2014) 26 (1): 28–40.
Published: 01 January 2014
FIGURES
| View All (6)
Abstract
View article
PDF
Human observers can readily track up to four independently moving items simultaneously, even in the presence of moving distractors. Here we combined EEG and magnetoencephalography recordings to investigate the neural processes underlying this remarkable capability. Participants were instructed to track four of eight independently moving items for 3 sec. When the movement ceased a probe stimulus consisting of four items with a higher luminance was presented. The location of the probe items could correspond fully, partly, or not at all with the tracked items. Participants reported whether the probe items fully matched the tracked items or not. About half of the participants showed slower RTs and higher error rates with increasing correspondence between tracked items and the probe. The other half, however, showed faster RTs and lower error rates when the probe fully matched the tracked items. This latter behavioral pattern was associated with enhanced probe-evoked neural activity that was localized to the lateral occipital cortex in the time range 170–210 msec. This enhanced response in the object-selective lateral occipital cortex suggested that these participants performed the tracking task by visualizing the overall shape configuration defined by the vertices of the tracked items, thereby producing a behavioral advantage on full-match trials. In a later time range (270–310 msec) probe-evoked neural activity increased monotonically as a function of decreasing target–probe correspondence in all participants. This later modulation, localized to superior parietal cortex, was proposed to reflect the degree of mismatch between the probe and the automatically formed visual STM representation of the tracked items.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2012) 24 (2): 287–303.
Published: 01 February 2012
FIGURES
| View All (6)
Abstract
View article
PDF
An inattentional blindness paradigm was adapted to measure ERPs elicited by visual contour patterns that were or were not consciously perceived. In the first phase of the experiment, subjects performed an attentionally demanding task while task-irrelevant line segments formed square-shaped patterns or random configurations. After the square patterns had been presented 240 times, subjects' awareness of these patterns was assessed. More than half of all subjects, when queried, failed to notice the square patterns and were thus considered inattentionally blind during this first phase. In the second phase of the experiment, the task and stimuli were the same, but following this phase, all of the subjects reported having seen the patterns. ERPs recorded over the occipital pole differed in amplitude from 220 to 260 msec for the pattern stimuli compared with the random arrays regardless of whether subjects were aware of the patterns. At subsequent latencies (300–340 msec) however, ERPs over bilateral occipital-parietal areas differed between patterns and random arrays only when subjects were aware of the patterns. Finally, in a third phase of the experiment, subjects viewed the same stimuli, but the task was altered so that the patterns became task relevant. Here, the same two difference components were evident but were followed by a series of additional components that were absent in the first two phases of the experiment. We hypothesize that the ERP difference at 220–260 msec reflects neural activity associated with automatic contour integration whereas the difference at 300–340 msec reflects visual awareness, both of which are dissociable from task-related postperceptual processing.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2011) 23 (4): 880–895.
Published: 01 April 2011
FIGURES
| View All (8)
Abstract
View article
PDF
The temporal sequence of neural processes supporting figure–ground perception was investigated by recording ERPs associated with subjects' perceptions of the face–vase figure. In Experiment 1, subjects continuously reported whether they perceived the face or the vase as the foreground figure by pressing one of two buttons. Each button press triggered a probe flash to the face region, the vase region, or the borders between the two. The N170/vertex positive potential (VPP) component of the ERP elicited by probes to the face region was larger when subjects perceived the faces as figure. Preceding the N170/VPP, two additional components were identified. First, when the borders were probed, ERPs differed in amplitude as early as 110 msec after probe onset depending on subjects' figure–ground perceptions. Second, when the face or vase regions were probed, ERPs were more positive (at ∼150–200 msec) when that region was perceived as figure versus background. These components likely reflect an early “border ownership” stage, and a subsequent “figure–ground segregation” stage of processing. To explore the influence of attention on these stages of processing, two additional experiments were conducted. In Experiment 2, subjects selectively attended to the face or vase region, and the same early ERP components were again produced. In Experiment 3, subjects performed an identical selective attention task, but on a display lacking distinctive figure–ground borders, and neither of the early components were produced. Results from these experiments suggest sequential stages of processing underlying figure–ground perception, each which are subject to modifications by selective attention.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2010) 22 (8): 1714–1729.
Published: 01 August 2010
FIGURES
| View All (9)
Abstract
View article
PDF
When a single flash of light is presented interposed between two brief auditory stimuli separated by 60–100 msec, subjects typically report perceiving two flashes [Shams, L., Kamitani, Y., & Shimojo, S. Visual illusion induced by sound. Brain Research, Cognitive Brain Research, 14, 147–152, 2002; Shams, L., Kamitani, Y., & Shimojo, S. Illusions. What you see is what you hear. Nature, 408, 788, 2000]. Using ERP recordings, we previously found that perception of the illusory extra flash was accompanied by a rapid dynamic interplay between auditory and visual cortical areas that was triggered by the second sound [Mishra, J., Martínez, A., Sejnowski, T. J., & Hillyard, S. A. Early cross-modal interactions in auditory and visual cortex underlie a sound-induced visual illusion. Journal of Neuroscience, 27, 4120–4131, 2007]. In the current study, we investigated the effect of attention on the ERP components associated with the illusory extra flash in 15 individuals who perceived this cross-modal illusion frequently. All early ERP components in the cross-modal difference wave associated with the extra flash illusion were significantly enhanced by selective spatial attention. The earliest attention-related modulation was an amplitude increase of the positive-going PD110/PD120 component, which was previously shown to be correlated with an individual's propensity to perceive the illusory second flash [Mishra, J., Martínez, A., Sejnowski, T. J., & Hillyard, S. A. Early cross-modal interactions in auditory and visual cortex underlie a sound-induced visual illusion. Journal of Neuroscience, 27, 4120–4131, 2007]. The polarity of the early PD110/PD120 component did not differ as a function of the visual field (upper vs. lower) of stimulus presentation. This, along with the source localization of the component, suggested that its principal generator lies in extrastriate visual cortex. These results indicate that neural processes previously shown to be associated with the extra flash illusion can be modulated by attention, and thus are not the result of a wholly automatic cross-modal integration process.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2006) 18 (2): 149–157.
Published: 01 February 2006
Abstract
View article
PDF
Blind individuals who lost their sight as older children or adults were compared with normally sighted controls in their ability to focus auditory spatial attention and to localize sounds in a noisy acoustic environment. Event-related potentials (ERPs) were recorded while participants attended to sounds presented in free field from either central or peripheral arrays of speakers with the task of detecting infrequent targets at the attended location. When attending to the central array of speakers, the two groups detected targets equally well, and their spatial tuning curves for both ERPs and target detections were highly similar. By contrast, late blind participants were significantly more accurate than sighted participants at localizing sounds in the periphery. For both groups, the early N1 amplitude to peripheral standard stimuli displayed no significant spatial tuning. In contrast, the amplitude of the later P3 elicited by targets/deviants displayed a more sharply tuned spatial gradient during peripheral attention in the late blind than in the sighted group. These findings were compared with those of a previous study of congenitally blind individuals in the same task [Röder, B., Teder-Sälejärvi, W., Sterr, A., Rösler, F., Hillyard, S. A., & Neville, H. J. Improved auditory spatial tuning in blind humans. Nature, 400 , 162–166, 1999]. It was concluded that both late blind and congenitally blind individuals demonstrate an enhanced capability for focusing auditory attention in the periphery, but they do so via different mechanisms: whereas congenitally blind persons demonstrate a more sharply tuned early attentional filtering, manifested in the N1, late blind individuals show superiority in a later stage of target discrimination and recognition, indexed by the P3.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2003) 15 (1): 10–19.
Published: 01 January 2003
Abstract
View article
PDF
Orienting attention involuntarily to the location of a sudden sound improves perception of subsequent visual stimuli that appear nearby. The neural substrates of this cross-modal attention effect were investigated by recording event-related potentials to the visual stimuli using a dense electrode array and localizing their brain sources through inverse dipole modeling. A spatially nonpredictive auditory precue modulated visual-evoked neural activity first in the superior temporal cortex at 120–140 msec and then in the ventral occipital cortex of the fusiform gyrus 15–25 msec later. This spatio-temporal sequence of brain activity suggests that enhanced visual perception produced by the cross-modal orienting of spatial attention results from neural feedback from the multimodal superior temporal cortex to the visual cortex of the ventral processing stream.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2000) 12 (5): 840–847.
Published: 01 September 2000
Abstract
View article
PDF
We investigated the hypothesis that the covert focusing of spatial attention mediates the on-line maintenance of location information in spatial working memory. During the delay period of a spatial working-memory task, behaviorally irrelevant probe stimuli were flashed at both memorized and nonmemorized locations. Multichannel recordings of event-related potentials (ERPs) were used to assess visual processing of the probes at the different locations. Consistent with the hypothesis of attention-based rehearsal, early ERP components were enlarged in response to probes that appeared at memorized locations. These visual modulations were similar in latency and topography to those observed after explicit manipulations of spatial selective attention in a parallel experimental condition that employed an identical stimulus display.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (1996) 8 (5): 387–402.
Published: 01 September 1996
Abstract
View article
PDF
The effects of spatial selective attention on sensory processing in visual cortical areas were investigated by means of visual evoked potential (VEP) recordings and source localization techniques. Patterned stimuli were rapidly presented in random order to the left and right visual fields while subjects maintained central fixation and attended to one visual field at a time. Attended stimuli evoked enhanced P1 (100–130 msec) and N1 (120–200 msec) components of the VEP, whereas no effects of attention were observed on the C1 (50–100 msec) or P2 (200–240 msec) components. Spatiotemporal dipole modeling of the early VEP sources was carried out in relation to MRI-defined cortical anatomy. The dipolar generator of the C1 component was found to lie in calcarine cortex, the human homologue of area V1, whereas the attention-sensitive P1 generator was localized to ventral-lateral occipital cortex, within extrastriate area 19. These results support the hypothesis that spatial attention does not affect the initial activity evoked in area V1 but rather produces an enhancement within extrastriate visual areas of sensory signals arising from stimuli at attended locations.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (1994) 6 (1): 84–91.
Published: 01 January 1994
Abstract
View article
PDF
Previous studies of visuospatial attention indicated that the isolated cerebral hemispheres of split-brain patients maintain an integrated, unitary focus of attention, presumably due to subcortical attentional mechanisms. The present study examined whether a unitary attentional focus would also be observed during a visual search task in which subjects scanned stimulus arrays for a target item. In a group of four commis-surotomy patients, the search rate for bilateral stimulus arrays was found to be approximately twice as fast as the search rate for unilateral arrays, indicating that the separated hemispheres were able to scan their respective hemifields independently. In contrast, the search rates for unilateral and bilateral arrays were approximately equal in a group of six normal control subjects, suggesting that the intact corpus callosum in these subjects is responsible for maintaining a unitary attentional focus during visual search.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (1993) 5 (2): 188–195.
Published: 01 April 1993
Abstract
View article
PDF
When subjects are explicitly cued to focus attention on a particular location in visual space, targets presented at that location have been shown to elicit enhanced sensory-evoked activity in recordings of event-related brain potentials (ERPs). The present study sought to determine if this type of sensory facilitation also occurs during visual search tasks in which a feature conjunction target must be identified, presumably by means of focal attention, within an array of distractor items. In this experiment, subjects were required to discriminate the shape of a distinctively colored target item within an array containing 15 distractor items, and ERPs were elicited by task-irrelevant probe stimuli that were presented at the location of the target item or at the location of a distractor item on the opposite side of the array. When the delay between search-array onset and probe onset was 250 msec, the sensory-evoked responses in the latency range 75-200 msec were larger for probes presented at the location of the target than for probes presented at the location of the irrelevant distractor. These results indicate that sensory processing is modulated in a spatially restricted manner during visual search, and that focusing attention on a feature conjunction target engages neural systems that are shared with other forms of visual-spatial attention.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (1990) 2 (3): 258–271.
Published: 01 July 1990
Abstract
View article
PDF
The lateral distribution of the P300 component of the event-related brain potential (ERP) was studied in five epileptic patients whose corpus callosum had been surgically sectioned and in seven neurologically intact controls. The P300 was elicited in an auditory “oddball” task using high- and low-pitched tones and in a visual oddball task in which target words were presented either to the left or right visual fields, or to both fields simultaneously. Commissurotomy altered the normal pattern of bilaterally symmetrical P300 waves over the left and right hemispheres, but in a different manner for auditory and visual stimuli. The auditory P3 to binaural tones was larger in amplitude over the right than the left hemisphere for the patients. In the visual task, the laterality of the P300 varied with the visual field of the target presentation. Left field targets elicited much larger P300 amplitudes over the right than the left hemisphere, as did bilateral targets. In contrast, right field targets triggered P300 waves of about the same amplitude over the two hemispheres. The overall amplitude of the P300 to simultaneous bilateral targets was less than the sum of the individual P300 amplitudes produced in response to the unilateral right and left field targets. These shifts in P300 laterality argue against the view that the P300 is an index of diffuse arousal or activation that is triggered in both hemispheres simultaneously irrespective of which hemisphere processes the target information. The results further demonstrate that the P300 does not depend for its production on interhemispheric comparisons of information mediated by the corpus callosum, as suggested recently by Knight et al. (1989).
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (1989) 1 (1): 38–49.
Published: 01 January 1989
Abstract
View article
PDF
Long-latency components of event-related brain potentials (ERPs) recorded from subjects reading meaningful text are sensitive to semantic relationships among the major lexical items of sentences. In particular, the N400 components are enlarged to words that are semantically unrelated to or incongruous with the context provided by preceding items in a sentence. The present experiment was aimed at finding out whether this inverse relationship between N400 amplitude and semantic association would extend to situations where words were presented in isolated pairs, using a design that dissociated changes in N400 from confounding ERP waves elicited by active decision making. KRP's were recorded to 320 word pairs presented to eleven subjects. Each pair of words was followed by a letter, and subjects made a differential response according to whether or not the letter had been present in either of the words. After the ERP recording session, subjects rated the degree of semantic association between the words in each pair. ERP averages were formed on the basis of the subjects' ratings and on the basis of normative, a priori categories. For both types of averages the N400 amplitude was found to be a sensitive index of semantic association, even though the association was incidental to the subject's assigned task. These findings suggest the utility of the N400 measure in studies of semantic priming and as a probe of the automaticity of contextual influences in language processing.