Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-3 of 3
Steven W. Keele
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2006) 18 (1): 14–21.
Published: 01 January 2006
Abstract
View article
PDF
Patients with focal lesions in the left (n = 7) and right (n = 4) prefrontal cortex were compared with controls (n = 16) in a task-switching experiment using four different, simple spatial tasks. Each of these tasks involved a left-right decision, either regarding an arrow, the word “left” or “right”, a circle position, or the direction of a moving line. We compared performance on trials that required rule switches versus rule repetitions (local switch costs) and we compared performance between blocks with bivalent stimuli (two dimensions present) and blocks with univalent stimuli (only one dimension present) to assess global switch costs. Patients with left prefrontal lesions, but not patients with right prefrontal lesions, exhibited increased costs on trials in which the relevant dimension switched (local switch costs), but also on no-switch trials with bivalent stimuli (global costs). We also assessed task-set inhibition in the form of the backward-inhibition effect [increased response times to recently abandoned tasks; Mayr, U., & Keele, S. Changing internal constraints on action: The role of backward inhibition. Journal of Experimental Psychology: General, 129, 4-26, 2000]. Although left frontal patients showed normal inhibition, right frontal patients showed no evidence for inhibition. These results suggest a neurocognitive dissociation between task-set selection and inhibition.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (1998) 10 (2): 178–198.
Published: 01 March 1998
Abstract
View article
PDF
Parkinson patients were tested in two paradigms to test the hypothesis that the basal ganglia are involved in the shifting of attentional set. Set shifting means a respecification of the conditions that regulate responding, a process sometimes referred to as an executive process . In one paradigm, upon the appearance of each stimulus, subjects were instructed to respond either to its color or to its shape. In a second paradigm, subjects learned to produce short sequences of three keypresses in response to two arbitrary stimuli. Reaction times were compared for the cases where set either remained the same or changed for two successive stimuli. Parkinson patients were slow to change set compared to controls. Parkinson patients were also less able to filter the competing but irrelevant set than were control subjects. The switching deficit appears to be dopamine based; the magnitude of the shifting deficit was related to the degree to which l-dopa-based medication ameliorated patients' motor symptoms. Moreover, temporary withholding of medication, a so-called off manipulation, increased the time to switch. Using the framework of equilibrium point theory of movement, we discuss how a set switching deficit may also underlie clinical motor disturbances seen in Parkinson's disease.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (1989) 1 (2): 136–152.
Published: 01 April 1989
Abstract
View article
PDF
This study investigated the effects of different types of neurological deficits on timing functions. The performance of Parkinson, cerebellar, cortical, and peripheral neuropathy patients was compared to age-matched control subjects on two separate measures of timing functions. The first task involved the production of timed intervals in which the subjects attempted to maintain a simple rhythm. The second task measured the subjects' perceptual ability to discriminate between small differences in the duration of two intervals. The primacy of the cerebellum in timing functions was demonstrated by the finding that these were the only patients who showed a deficit in both the production and perception of timing tasks. The cerebellar group was found to have increased variability in performing rhythmic tapping and they were less accurate than the other groups in making perceptual discriminations regarding small differences in duration. Critically, this perceptual deficit appears to be specific to the perception of time since the cerebellar patients were unaffected in a control task measuring the perception of loudness. It is argued that the operation of a timing mechanism can be conceptualized as an isolable component of the motor control system. Furthermore, the results suggest that the domain of the cerebellar timing process is not limited to the motor system, but is employed by other perceptual and cognitive systems when temporally predictive computations are needed.