Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-2 of 2
Takako Fujioka
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2005) 17 (10): 1578–1592.
Published: 01 October 2005
Abstract
View article
PDF
In music, multiple musical objects often overlap in time. Western polyphonic music contains multiple simultaneous melodic lines (referred to as “voices”) of equal importance. Previous electrophysiological studies have shown that pitch changes in a single melody are automatically encoded in memory traces, as indexed by mismatch negativity (MMN) and its magnetic counterpart (MMNm), and that this encoding process is enhanced by musical experience. In the present study, we examined whether two simultaneous melodies in polyphonic music are represented as separate entities in the auditory memory trace. Musicians and untrained controls were tested in both magnetoencephalogram and behavioral sessions. Polyphonic stimuli were created by combining two melodies (A and B), each consisting of the same five notes but in a different order. Melody A was in the high voice and Melody B in the low voice in one condition, and this was reversed in the other condition. On 50% of trials, a deviant final (5th) note was played either in the high or in the low voice, and it either went outside the key of the melody or remained within the key. These four deviations occurred with equal probability of 12.5% each. Clear MMNm was obtained for most changes in both groups, despite the 50% deviance level, with a larger amplitude in musicians than in controls. The response pattern was consistent across groups, with larger MMNm for deviants in the high voice than in the low voice, and larger MMNm for in-key than out-of-key changes, despite better behavioral performance for out-of-key changes. The results suggest that melodic information in each voice in polyphonic music is encoded in the sensory memory trace, that the higher voice is more salient than the lower, and that tonality may be processed primarily at cognitive stages subsequent to MMN generation.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2004) 16 (6): 1010–1021.
Published: 01 July 2004
Abstract
View article
PDF
In music, melodic information is thought to be encoded in two forms, a contour code (up/down pattern of pitch changes) and an interval code (pitch distances between successive notes). A recent study recording the mismatch negativity (MMN) evoked by pitch contour and interval deviations in simple melodies demonstrated that people with no formal music education process both contour and interval information in the auditory cortex automatically. However, it is still unclear whether musical experience enhances both strategies of melodic encoding. We designed stimuli to examine contour and interval information separately. In the contour condition there were eight different standard melodies (presented on 80% of trials), each consisting of five notes all ascending in pitch, and the corresponding deviant melodies (20%) were altered to descending on their final note. The interval condition used one five-note standard melody transposed to eight keys from trial to trial, and on deviant trials the last note was raised by one whole tone without changing the pitch contour. There was also a control condition, in which a standard tone (990.7 Hz) and a deviant tone (1111.0 Hz) were presented. The magnetic counterpart of the MMN (MMNm) from musicians and nonmusicians was obtained as the difference between the dipole moment in response to the standard and deviant trials recorded by magnetoencephalography. Significantly larger MMNm was present in musicians in both contour and interval conditions than in nonmusicians, whereas MMNm in the control condition was similar for both groups. The interval MMNm was larger than the contour MMNm in musicians. No hemispheric difference was found in either group. The results suggest that musical training enhances the ability to automatically register abstract changes in the relative pitch structure of melodies.