Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Terry L. Jernigan
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2016) 28 (12): 1897–1908.
Published: 01 December 2016
FIGURES
Abstract
View article
PDF
Sensitivity to global visual motion has been proposed as a signature of brain development, related to the dorsal rather than ventral cortical stream. Thresholds for global motion have been found to be elevated more than for global static form in many developmental disorders, leading to the idea of “dorsal stream vulnerability.” Here we explore the association of global motion thresholds with individual differences in children's brain development, in a group of typically developing 5- to 12-year-olds. Good performance was associated with a relative increase in parietal lobe surface area, most strongly around the intraparietal sulcus and decrease in occipital area. In line with the involvement of intraparietal sulcus, areas in visuospatial and numerical cognition, we also found that global motion performance was correlated with tests of visuomotor integration and numerical skills. Individual differences in global form detection showed none of these anatomical or cognitive correlations. This suggests that the correlations with motion sensitivity are unlikely to reflect general perceptual or attentional abilities required for both form and motion. We conclude that individual developmental variations in global motion processing are not linked to greater area in the extrastriate visual areas, which initially process such motion, but in the parietal systems that make decisions based on this information. The overlap with visuospatial and numerical abilities may indicate the anatomical substrate of the “dorsal stream vulnerability” proposed as characterizing neurodevelopmental disorders.
Journal Articles
Martin Vestergaard, Kathrine Skak Madsen, William F. C. Baaré, Arnold Skimminge, Lisser Rye Ejersbo ...
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2011) 23 (9): 2135–2146.
Published: 01 September 2011
FIGURES
Abstract
View article
PDF
During childhood and adolescence, ongoing white matter maturation in the fronto-parietal cortices and connecting fiber tracts is measurable with diffusion-weighted imaging. Important questions remain, however, about the links between these changes and developing cognitive functions. Spatial working memory (SWM) performance improves significantly throughout the childhood years, and several lines of evidence implicate the left fronto-parietal cortices and connecting fiber tracts in SWM processing. Here we report results from a study of 76 typically developing children, 7 to 13 years of age. We hypothesized that better SWM performance would be associated with increased fractional anisotropy (FA) in a left fronto-parietal network composed of the superior longitudinal fasciculus (SLF), the regional white matter underlying the dorsolateral pFC, and the posterior parietal cortex. As hypothesized, we observed a significant association between higher FA in the left fronto-parietal network and better SWM skills, and the effect was independent of age. This association was mainly accounted for by variability in left SLF FA and remained significant when FA measures from global fiber tracts or right SLF were included in the model. Further, the effect of FA in left SLF appeared to be mediated primarily by decreasing perpendicular diffusivity. Such associations could be related to individual differences among children in the architecture of fronto-parietal connections and/or to differences in the pace of fiber tract development. Further studies are needed to determine the contributions of intrinsic and experiential factors to the development of functionally significant individual differences in fiber tract structure.