Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-4 of 4
Thalia Wheatley
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2016) 28 (11): 1749–1759.
Published: 01 November 2016
FIGURES
Abstract
View article
PDF
Two sets of items can share the same underlying conceptual structure, while appearing unrelated at a surface level. Humans excel at recognizing and using alignments between such underlying structures in many domains of cognition, most notably in analogical reasoning. Here we show that structural alignment reveals how different people's neural representations of word meaning are preserved across different languages, such that patterns of brain activation can be used to translate words from one language to another. Groups of Chinese and English speakers underwent fMRI scanning while reading words in their respective native languages. Simply by aligning structures representing the two groups' neural semantic spaces, we successfully infer all seven Chinese–English word translations. Beyond language translation, conceptual structural alignment underlies many aspects of high-level cognition, and this work opens the door to deriving many such alignments directly from neural representational content.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2015) 27 (5): 866–875.
Published: 01 May 2015
FIGURES
Abstract
View article
PDF
Via mental simulation, imagined events faithfully reproduce the neural and behavioral activities that accompany their actual occurrence. However, little is known about how fundamental characteristics of mental imagery—notably perspectives of self—shape neurocognitive processes. To address this issue, we used fMRI to explore the impact that vantage point exerts on the neural and behavioral correlates of imaginary sensory experiences (i.e., pain). Participants imagined painful scenarios from three distinct visual perspectives: first-person self (1PS), third-person self (3PS), and third-person other (3PO). Corroborating increased ratings of pain and embodiment, 1PS (cf. 3PS) simulations elicited greater activity in the right anterior insula, a brain area that supports interoceptive and emotional awareness. Additionally, 1PS simulations evoked greater activity in brain areas associated with visual imagery and the sense of body ownership. Interestingly, no differences were observed between 3PS and 3PO imagery. Taken together, these findings reveal the neural and behavioral correlates of visual perspective during mental simulation.
Journal Articles
Carolyn Parkinson, Walter Sinnott-Armstrong, Philipp E. Koralus, Angela Mendelovici, Victoria McGeer ...
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2011) 23 (10): 3162–3180.
Published: 01 October 2011
FIGURES
| View All (6)
Abstract
View article
PDF
Much recent research has sought to uncover the neural basis of moral judgment. However, it has remained unclear whether “moral judgments” are sufficiently homogenous to be studied scientifically as a unified category. We tested this assumption by using fMRI to examine the neural correlates of moral judgments within three moral areas: (physical) harm, dishonesty, and (sexual) disgust. We found that the judgment of moral wrongness was subserved by distinct neural systems for each of the different moral areas and that these differences were much more robust than differences in wrongness judgments within a moral area. Dishonest, disgusting, and harmful moral transgression recruited networks of brain regions associated with mentalizing, affective processing, and action understanding, respectively. Dorsal medial pFC was the only region activated by all scenarios judged to be morally wrong in comparison with neutral scenarios. However, this region was also activated by dishonest and harmful scenarios judged not to be morally wrong, suggestive of a domain-general role that is neither peculiar to nor predictive of moral decisions. These results suggest that moral judgment is not a wholly unified faculty in the human brain, but rather, instantiated in dissociable neural systems that are engaged differentially depending on the type of transgression being judged.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2005) 17 (12): 1871–1885.
Published: 01 December 2005
Abstract
View article
PDF
We used rapid, event-related fMRI to identify the neural systems underlying object semantics. During scanning, subjects silently read rapidly presented word pairs (150 msec, SOA = 250 msec) that were either unrelated in meaning (ankle-carrot), semantically related (fork-cup), or identical (crow-crow). Activity in the left posterior region of the fusiform gyrus and left inferior frontal cortex was modulated by word-pair relationship. Semantically related pairs yielded less activity than unrelated pairs, but greater activity than identical pairs, mirroring the pattern of behavioral facilitation as measured by word reading times. These findings provide strong support for the involvement of these areas in the automatic processing of object meaning. In addition, words referring to animate objects produced greater activity in the lateral region of the fusiform gyri, right superior temporal sulcus, and medial region of the occipital lobe relative to manmade, manipulable objects, whereas words referring to manmade, manipulable objects produced greater activity in the left ventral premotor, left anterior cingulate, and bilateral parietal cortices relative to animate objects. These findings are consistent with the dissociation between these areas based on sensory-and motor-related object properties, providing further evidence that conceptual object knowledge is housed, in part, in the same neural systems that subserve perception and action.