Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-2 of 2
Thomas R. Knösche
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2006) 18 (3): 472–493.
Published: 01 March 2006
Abstract
View article
PDF
A neural correlate for phrase boundary perception in music has recently been identified in musicians. It is called music closure positive shift (“music CPS”) and has an equivalent in the perception of speech (“language CPS”). The aim of the present study was to investigate the influence of musical expertise and different phrase boundary markers on the music CPS, using event-related brain potentials (ERPs) and event-related magnetic fields (ERFs). Musicians and nonmusicians were tested while listening to binary phrased melodies. ERPs and ERFs of both subject groups differed considerably from each other. Phrased melody versions evoked an electric CPS and a magnetic CPSm in musicians, but an early negativity and a less pronounced CPSm in nonmusicians, suggesting different perceptual strategies for both subject groups. Musicians seem to process musical phrases in a structured manner similar to language. Nonmusicians, in contrast, are thought to detect primarily discontinuity in the melodic input. Variations of acoustic cues in the vicinity of the phrase boundary reveal that the CPS is influenced by a number of parameters that are considered to indicate phrasing in melodies: pause length, length of the last tone preceding the pause, and harmonic function of this last tone. This is taken as evidence that the CPS mainly reflects higher cognitive processing of phrasing, rather than mere perception of pauses. Furthermore, results suggest that the ERP and MEG methods are sensitive to different aspects within phrase perception. For both subject groups, qualitatively different ERP components (CPS and early negativity) seem to reflect a top-down activation of general but different phrasing schemata, whereas quantitatively differing MEG signals appear to reflect gradual differences in the bottom-up processing of acoustic boundary markers.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2001) 13 (6): 786–792.
Published: 15 August 2001
Abstract
View article
PDF
Pianists often report that pure listening to a well-trained piece of music can involuntarily trigger the respective finger movements. We designed a magnetoencephalography (MEG) experiment to compare the motor activation in pianists and nonpianists while listening to piano pieces. For pianists, we found a statistically significant increase of activity above the region of the contralateral motor cortex. Brain surface current density (BSCD) reconstructions revealed a spatial dissociation of this activity between notes preferably played by the thumb and the little finger according to the motor homunculus. Hence, we could demonstrate that pianists, when listening to well-trained piano music, exhibit involuntary motor activity involving the contralateral primary motor cortex (M1).