Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-6 of 6
Tilo Kircher
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2017) 29 (7): 1119–1131.
Published: 01 July 2017
FIGURES
| View All (4)
Abstract
View article
PDF
While listening to continuous speech, humans process beat information to correctly identify word boundaries. The beats of language are stress patterns that are created by combining lexical (word-specific) stress patterns and the rhythm of a specific language. Sometimes, the lexical stress pattern needs to be altered to obey the rhythm of the language. This study investigated the interplay of lexical stress patterns and rhythmical well-formedness in natural speech with fMRI. Previous electrophysiological studies on cases in which a regular lexical stress pattern may be altered to obtain rhythmical well-formedness showed that even subtle rhythmic deviations are detected by the brain if attention is directed toward prosody. Here, we present a new approach to this phenomenon by having participants listen to contextually rich stories in the absence of a task targeting the manipulation. For the interaction of lexical stress and rhythmical well-formedness, we found one suprathreshold cluster localized between the cerebellum and the brain stem. For the main effect of lexical stress, we found higher BOLD responses to the retained lexical stress pattern in the bilateral SMA, bilateral postcentral gyrus, bilateral middle fontal gyrus, bilateral inferior and right superior parietal lobule, and right precuneus. These results support the view that lexical stress is processed as part of a sensorimotor network of speech comprehension. Moreover, our results connect beat processing in language to domain-independent timing perception.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2012) 24 (4): 915–932.
Published: 01 April 2012
FIGURES
Abstract
View article
PDF
Typically, plural nouns are morphosyntactically marked for the number feature, whereas mass nouns are morphosyntactically singular. However, both plural count nouns and mass nouns can be semantically interpreted as nonsingular. In this study, we investigated the hypothesis that their commonality in semantic interpretation may lead to common cortical activation for these different kinds of nonsingularity. To this end, we examined brain activation patterns related to three types of nouns while participants were listening to a narrative. Processing of plural compared with singular nouns was related to increased activation in the left angular gyrus. Processing of mass nouns compared with singular count nouns was related to increased activity bilaterally in the superior temporal cortex and also in the left angular gyrus. No significant activation was observed in the direct comparison between plural and mass nouns. We conclude that the left angular gyrus, also known to be relevant for numerical cognition, is involved in the semantic interpretation of different kinds of nonsingularity.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2011) 23 (5): 1263–1273.
Published: 01 May 2011
FIGURES
Abstract
View article
PDF
Semantic priming, a well-established technique to study conceptual representation, has thus far produced variable fMRI results, both regarding the type of priming effects and their correlation with brain activation. The aims of the current study were (a) to investigate two types of semantic relations—categorical versus associative—under controlled processing conditions and (b) to investigate whether categorical and associative relations between words are correlated with response enhancement or response suppression. We used fMRI to examine neural correlates of semantic priming as subjects performed a lexical decision task with a long SOA (800 msec). Four experimental conditions were compared: categorically related trials ( couch–bed ), associatively related trials ( couch–pillow ), unrelated trials ( couch–bridge ), and nonword trials ( couch–sibor ). We found similar behavioral priming effects for both categorically and associatively related pairs. However, the neural priming effects differed: Categorically related pairs resulted in a neural suppression effect in the right MFG, whereas associatively related pairs resulted in response enhancement in the left IFG. A direct contrast between them revealed activation for categorically related trials in the right insular lobe. We conclude that perceptual and functional similarity of categorically related words may lead to response suppression within right-lateralized frontal regions that represent more retrieval effort and the recruitment of a broader semantic field. Associatively related pairs that require a different processing of the related target compared to the prime may lead to the response enhancement within left inferior frontal regions. Nevertheless, the differences between associative and categorical relations might be parametrical rather than absolutely distinct as both relationships recruit similar regions to a different degree.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2011) 23 (2): 306–324.
Published: 01 February 2011
FIGURES
| View All (6)
Abstract
View article
PDF
In social situations, we encounter information transferred in firsthand (egocentric) and secondhand (allocentric) communication contexts. However, the mechanism by which an individual distinguishes whether a past interaction occurred in an egocentric versus allocentric situation is poorly understood. This study examined the neural bases for encoding memories of social interactions through experimentally manipulating the communication context. During fMRI data acquisition, participants watched video clips of an actor speaking and gesturing directly toward them (egocentric context) or toward an unseen third person (allocentric context). After scanning, a recognition task gauged participants' ability to recognize the sentences they had just seen and to recall the context in which the sentences had been spoken. We found no differences between the recognition of sentences spoken in egocentric and allocentric contexts. However, when asked about the communication context (“Had the actor directly spoken to you?”), participants tended to believe falsely that the actor had directly spoken to them during allocentric conditions. Greater activity in the hippocampus was related to correct context memory, whereas the ventral ACC was activated for subsequent inaccurate context memory. For the interaction between encoding context and context memory, we observed increased activation for egocentric remembered items in the bilateral and medial frontal cortex, the BG, and the left parietal and temporal lobe. Our data indicate that memories of social interactions are biased to be remembered egocentrically. Self-referential encoding processes reflected in increased frontal activation and decreased hippocampal activation might be the basis of correct item but false context memory of social interactions.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2009) 21 (4): 821–836.
Published: 01 April 2009
Abstract
View article
PDF
In human face-to-face communication, the content of speech is often illustrated by coverbal gestures. Behavioral evidence suggests that gestures provide advantages in the comprehension and memory of speech. Yet, how the human brain integrates abstract auditory and visual information into a common representation is not known. Our study investigates the neural basis of memory for bimodal speech and gesture representations. In this fMRI study, 12 participants were presented with video clips showing an actor performing meaningful metaphoric gestures (MG), unrelated, free gestures (FG), and no arm and hand movements (NG) accompanying sentences with an abstract content. After the fMRI session, the participants performed a recognition task. Behaviorally, the participants showed the highest hit rate for sentences accompanied by meaningful metaphoric gestures. Despite comparable old/new discrimination performances ( d ′) for the three conditions, we obtained distinct memory-related left-hemispheric activations in the inferior frontal gyrus (IFG), the premotor cortex (BA 6), and the middle temporal gyrus (MTG), as well as significant correlations between hippocampal activation and memory performance in the metaphoric gesture condition. In contrast, unrelated speech and gesture information (FG) was processed in areas of the left occipito-temporal and cerebellar region and the right IFG just like the no-gesture condition (NG). We propose that the specific left-lateralized activation pattern for the metaphoric speech–gesture sentences reflects semantic integration of speech and gestures. These results provide novel evidence about the neural integration of abstract speech and gestures as it contributes to subsequent memory performance.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2009) 21 (4): 697–712.
Published: 01 April 2009
Abstract
View article
PDF
Functional imaging studies of single word production have consistently reported activation of the lateral prefrontal and cingulate cortex. Its contribution has been shown to be sensitive to task demands, which can be manipulated by the degree of response specification. Compared with classical verbal fluency, free word association relies less on response restrictions but to a greater extent on associative binding processes, usually subserved by the hippocampus. To elucidate the relevance of the frontal and medial-temporal areas during verbal retrieval tasks, we applied varying degrees of response specification. During fMRI data acquisition, 18 subjects performed a free verbal association (FVA), a semantic verbal fluency (SVF) task, and a phonological verbal fluency (PVF) task. Externally guided word production served as a baseline condition to control for basic articulatory and reading processes. As expected, increased brain activity was observed in the left lateral and bilateral medial frontal cortices for SVF and PVF. The anterior cingulate gyrus was the only structure common to both fluency tasks in direct comparison to the less restricted FVA task. The hippocampus was engaged during associative and semantic retrieval. Interestingly, hippocampal activity was selectively evident during FVA in direct comparison to SVF when it was controlled for stimulus–response relations. The current data confirm the role of the left prefrontal–cingulate network in constrained word production. Hippocampal activity during spontaneous word production is a novel finding and seems to be dependent on the retrieval process (free vs. constrained) rather than the variety of stimulus–response relationships that is involved.