Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Timothy D. Griffiths
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2014) 26 (3): 514–528.
Published: 01 March 2014
FIGURES
| View All (7)
Abstract
View article
PDF
Our ability to detect prominent changes in complex acoustic scenes depends not only on the ear's sensitivity but also on the capacity of the brain to process competing incoming information. Here, employing a combination of psychophysics and magnetoencephalography (MEG), we investigate listeners' sensitivity in situations when two features belonging to the same auditory object change in close succession. The auditory object under investigation is a sequence of tone pips characterized by a regularly repeating frequency pattern. Signals consisted of an initial, regularly alternating sequence of three short (60 msec) pure tone pips (in the form ABCABC…) followed by a long pure tone with a frequency that is either expected based on the on-going regular pattern (“LONG expected”—i.e., “LONG-expected”) or constitutes a pattern violation (“LONG-unexpected”). The change in LONG-expected is manifest as a change in duration (when the long pure tone exceeds the established duration of a tone pip), whereas the change in LONG-unexpected is manifest as a change in both the frequency pattern and a change in the duration. Our results reveal a form of “change deafness,” in that although changes in both the frequency pattern and the expected duration appear to be processed effectively by the auditory system—cortical signatures of both changes are evident in the MEG data—listeners often fail to detect changes in the frequency pattern when that change is closely followed by a change in duration. By systematically manipulating the properties of the changing features and measuring behavioral and MEG responses, we demonstrate that feature changes within the same auditory object, which occur close together in time, appear to compete for perceptual resources.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2011) 23 (10): 3084–3094.
Published: 01 October 2011
FIGURES
| View All (6)
Abstract
View article
PDF
In this work, we show that electrophysiological responses during pitch perception are best explained by distributed activity in a hierarchy of cortical sources and, crucially, that the effective connectivity between these sources is modulated with pitch strength. Local field potentials were recorded in two subjects from primary auditory cortex and adjacent auditory cortical areas along the axis of Heschl's gyrus (HG) while they listened to stimuli of varying pitch strength. Dynamic causal modeling was used to compare system architectures that might explain the recorded activity. The data show that representation of pitch requires an interaction between nonprimary and primary auditory cortex along HG that is consistent with the principle of predictive coding.