Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Timothy R. Koscik
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2013) 25 (8): 1372–1382.
Published: 01 August 2013
FIGURES
| View All (5)
Abstract
View article
PDF
People tend to assume that outcomes are caused by dispositional factors, for example, a person's constitution or personality, even when the actual cause is due to situational factors, for example, luck or coincidence. This is known as the “correspondence bias.” This tendency can lead normal, intelligent persons to make suboptimal decisions. Here, we used a neuropsychological approach to investigate the neural basis of the correspondence bias, by studying economic decision-making in patients with damage to the ventromedial pFC (vmPFC). Given the role of the vmPFC in social cognition, we predicted that vmPFC is necessary for the normal correspondence bias. In our experiment, consistent with expectations, healthy ( n = 46) and brain-damaged ( n = 30) comparison participants displayed the correspondence bias during economic decision-making and invested no differently when given dispositional or situational information. By contrast, vmPFC patients ( n = 17) displayed a lack of correspondence bias and invested more when given dispositional than situational information. The results support the conclusion that vmPFC is critical for normal social inference and the correspondence bias. The findings help clarify the important (and sometimes disadvantageous) role of social inference in economic decision-making.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2012) 24 (5): 1191–1204.
Published: 01 May 2012
FIGURES
| View All (10)
Abstract
View article
PDF
We hypothesized that the ventromedial pFC (vmPFC) is critical for making transitive inferences (e.g., the logical operation that if A > B and B > C, then A > C). To test this, participants with focal vmPFC damage, brain-damaged comparison participants, and neurologically normal participants completed a transitive inference task consisting an ordered set of arbitrary patterns. Participants first learned through trial-and-error the relationships of the patterns (e.g., Pattern A > Pattern B, Pattern B > Pattern C). After initial learning, participants were presented with novel pairings, some of which required transitive inference (e.g., Pattern A > Pattern C from the relationship above). We observed that vmPFC damage led to a specific deficit in transitive inference, suggesting that an intact vmPFC is necessary for making normal transitive inferences. Given the usefulness of transitivity in inferring social relationships, this deficit may be one of the basic features of social conduct problems associated with vmPFC damage.