Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-14 of 14
Tobias Egner
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2024) 36 (2): 377–393.
Published: 01 February 2024
FIGURES
| View All (7)
Abstract
View article
PDF
An individual's readiness to switch tasks (cognitive flexibility) varies over time, in part, as the result of reinforcement learning based on the statistical structure of the world around them. Consequently, the behavioral cost associated with task-switching is smaller in contexts where switching is frequent than where it is rare, but the underlying brain mechanisms of this adaptation in cognitive flexibility are not well understood. Here, we manipulated the likelihood of switches across blocks of trials in a classic cued task-switching paradigm while participants underwent fMRI. As anticipated, behavioral switch costs decreased as the probability of switching increased, and neural switch costs were observed in lateral and medial frontoparietal cortex. To study moment-by-moment adjustments in cognitive flexibility at the neural level, we first fitted the behavioral RT data with reinforcement learning algorithms and then used the resulting trial-wise prediction error estimate as a regressor in a model-based fMRI analysis. The results revealed that lateral frontal and parietal cortex activity scaled positively with unsigned switch prediction error and that there were no brain regions encoding signed (i.e., switch- or repeat-specific) prediction error. Taken together, this study documents that adjustments in cognitive flexibility to time-varying switch demands are mediated by frontoparietal cortex tracking the likelihood of forthcoming task switches.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2023) 35 (6): 919–940.
Published: 01 June 2023
FIGURES
| View All (5)
Abstract
View article
PDF
Goal-directed behavior relies on maintaining relevant goals in working memory (WM) and updating them when required. Computational modeling, behavioral, and neuroimaging work has previously identified the processes and brain regions involved in selecting, updating, and maintaining declarative information, such as letters and pictures. However, the neural substrates that underlie the analogous processes that operate on procedural information, namely, task goals, are currently unknown. Forty-three participants were therefore scanned with fMRI while performing a procedural version of the reference-back paradigm that allowed for the decomposition of WM updating processes into gate-opening, gate-closing, task switching, and task cue conflict components. Significant behavioral costs were observed for each of these components, with interactions indicating facilitation between gate-opening and task switching, and a modulation of cue conflict by gate state. In neural terms, opening the gate to procedural WM was associated with activity in medial pFC, posterior parietal cortex (PPC), the basal ganglia (BG), thalamus, and midbrain, but only when the task set needed to be updated. Closing the gate to procedural WM was associated with frontoparietal and BG activity specifically in conditions where conflicting task cues had to be ignored. Task switching was associated with activity in the medial pFC/ACC, PPC, and BG, whereas cue conflict was associated with PPC and BG activity during gate closing but was abolished when the gate was already closed. These results are discussed in relation to declarative WM and to gating models of WM.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2022) 34 (3): 480–494.
Published: 01 February 2022
FIGURES
| View All (6)
Abstract
View article
PDF
To adaptively interact with the uncertainties of daily life, we must match our level of cognitive flexibility to situations that place different demands on our ability to focus on the current task while remaining sensitive to cues that signal other, more urgent tasks. Such cognitive-flexibility adjustments in response to changing contextual demands (metaflexibility) have been observed in cued task-switching paradigms, where the performance cost incurred by switching versus repeating tasks (switch cost) scales inversely with the proportion of switches (PS) within a block of trials. However, the neural underpinnings of these adjustments in cognitive flexibility are not well understood. Here, we recorded 64-channel EEG measures of electrical brain activity as participants switched between letter and digit categorization tasks in varying PS contexts, from which we extracted ERPs elicited by the task cue and EEG alpha-power differences during both the cue-to-target interval and the resting precue period. The temporal resolution of EEG/ERPs allowed us to test whether contextual adjustments in cognitive flexibility are mediated by tonic changes in processing mode, or by changes in phasic, task-cue-triggered processes. We observed reliable modulation of behavioral switch cost by PS context that were mirrored in both cue-evoked ERP and time–frequency effects, but not in blockwide precue EEG changes. These results indicate that different levels of cognitive flexibility are instantiated in response to the presentation of task cues, rather than by being maintained as a tonic neural-activity state difference between low- and high-switch contexts.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2021) 33 (10): 2079–2092.
Published: 01 September 2021
FIGURES
| View All (6)
Abstract
View article
PDF
Attention and working memory (WM) have classically been considered as two separate cognitive functions, but more recent theories have conceptualized them as operating on shared representations and being distinguished primarily by whether attention is directed internally (WM) or externally (attention, traditionally defined). Supporting this idea, a recent behavioral study documented a “WM Stroop effect,” showing that maintaining a color word in WM impacts perceptual color-naming performance to the same degree as presenting the color word externally in the classic Stroop task. Here, we employed ERPs to examine the neural processes underlying this WM Stroop task compared to those in the classic Stroop and in a WM-control task. Based on the assumption that holding a color word in WM would (pre-)activate the same color representation as by externally presenting that color word, we hypothesized that the neural cascade of conflict–control processes would occur more rapidly in the WM Stroop than in the classic Stroop task. Our behavioral results replicated equivalent interference behavioral effects for the WM and classic Stroop tasks. Importantly, however, the ERP signatures of conflict detection and resolution displayed substantially shorter latencies in the WM Stroop task. Moreover, delay-period conflict in the WM Stroop task, but not in the WM control task, impacted the ERP and performance measures for the WM probe stimuli. Together, these findings provide new insights into how the brain processes conflict between internal representations and external stimuli, and they support the view of shared representations between internally held WM content and attentional processing of external stimuli.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2021) 33 (8): 1428–1441.
Published: 01 July 2021
FIGURES
Abstract
View article
PDF
To achieve our moment-to-moment goals, we must often keep information temporarily in mind. Yet, this working memory (WM) may compete with demands for our attention in the environment. Attentional and WM functions are thought to operate by similar underlying principles, and they often engage overlapping fronto-parietal brain regions. In a recent fMRI study, bilateral parietal cortex BOLD activity displayed an interaction between WM and visual attention dual-task demands. However, prior studies also suggest that left and right parietal cortices make unique contributions to WM and attentional functions. Moreover, behavioral performance often shows no interaction between concurrent WM and attentional demands. Thus, the scope of reciprocity between WM and attentional functions, as well as the specific contribution that parietal cortex makes to these functions, remain unresolved. Here, we took a causal approach, targeting brain regions that are implicated in shared processing between WM and visual attention, to better characterize how those regions contribute to behavior. We first examined whether behavioral indices of WM and visual search differentially correlate with left and right parietal dual-task BOLD responses. Then, we delivered TMS over fMRI-guided left and right parietal sites during dual-task WM–visual search performance. Only right-parietal TMS influenced visual search behavior, but the stimulation either helped or harmed search depending on the current WM load. Therefore, whereas the left and right parietal contributions were distinct here, attentional and WM functions were codependent. Right parietal cortex seems to hold a privileged role in visual search behavior, consistent with prior findings, but the current results reveal that behavior may be sensitive to the interaction between visual search and WM load only when normal parietal activity is perturbed. The parietal response to heightened WM and attentional demands may therefore serve to protect against dual-task interference.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2020) 32 (12): 2285–2302.
Published: 01 December 2020
FIGURES
| View All (6)
Abstract
View article
PDF
Working memory (WM) needs to protect current content from interference and simultaneously be amenable to rapid updating with newly relevant information. An influential model suggests these opposing requirements are met via a BG–thalamus gating mechanism that allows for selective updating of PFC WM representations. A large neuroimaging literature supports the general involvement of PFC, BG, and thalamus, as well as posterior parietal cortex, in WM. However, the specific functional contributions of these regions to key subprocesses of WM updating, namely, gate opening, content substitution, and gate closing, are still unknown, as common WM tasks conflate these processes. We therefore combined fMRI with the reference-back task, specifically designed to tease apart these subprocesses. Participants compared externally presented face stimuli to a reference face held in WM, while alternating between updating and maintaining this reference, resulting in opening versus closing the gate to WM. Gate opening and substitution processes were associated with strong BG, thalamic, and frontoparietal activation, but intriguingly, the same activity profile was observed for sensory cortex supporting task stimulus processing (i.e., the fusiform face area). In contrast, gate closing was not reliably associated with any of these regions. These findings provide new support for the involvement of the BG in gate opening, as suggested by the gating model, but qualify the model's assumptions by demonstrating that gate closing does not seem to depend on the BG and that gate opening also involves task-relevant sensory cortex.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2020) 32 (5): 989–1008.
Published: 01 May 2020
FIGURES
| View All (8)
Abstract
View article
PDF
Individuals are able to adjust their readiness to shift spatial attention, referred to as “attentional flexibility,” according to the changing demands of the environment, but the neural mechanisms underlying learned adjustments in flexibility are unknown. In the current study, we used fMRI to identify the brain structures responsible for learning shift likelihood. Participants were cued to covertly hold or shift attention among continuous streams of alphanumeric characters and to indicate the parity of target stimuli. Unbeknown to the participants, the stream locations were predictive of the likelihood of having to shift (or hold) attention. Participants adapted their attentional flexibility according to contextual demands, such that the RT cost associated with shifting attention was smallest when shift cues were most likely. Learning model-derived shift prediction error scaled positively with activity within dorsal and ventral frontoparietal regions, documenting that these regions track and update shift likelihood. A complementary inverted encoding model analysis revealed that the pretrial difference in attentional selection strength between to-be-attended and to-be-ignored locations did not change with increasing shift likelihood. The behavioral improvement associated with learned flexibility may primarily arise from a speeding of the shift process rather than from preparatory broadening of attentional selection.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2019) 31 (7): 1079–1090.
Published: 01 July 2019
FIGURES
| View All (5)
Abstract
View article
PDF
The contents of working memory (WM) guide visual attention toward matching features, with visual search being faster when the target and a feature of an item held in WM spatially overlap (validly cued) than when they occur at different locations (invalidly cued). Recent behavioral studies have indicated that attentional capture by WM content can be modulated by cognitive control: When WM cues are reliably helpful to visual search (predictably valid), capture is enhanced, but when reliably detrimental (predictably invalid), capture is attenuated. The neural mechanisms underlying this effect are not well understood, however. Here, we leveraged the high temporal resolution of ERPs time-locked to the onset of the search display to determine how and at what processing stage cognitive control modulates the search process. We manipulated predictability by grouping trials into unpredictable (50% valid/invalid) and predictable (100% valid, 100% invalid) blocks. Behavioral results confirmed that predictability modulated WM-related capture. Comparison of ERPs to the search arrays showed that the N2pc, a posteriorly distributed signature of initial attentional orienting toward a lateralized target, was not impacted by target validity predictability. However, a longer latency, more anterior, lateralized effect—here, termed the “contralateral attention-related negativity”—was reduced under predictable conditions. This reduction interacted with validity, with substantially greater reduction for invalid than valid trials. These data suggest cognitive control over attentional capture by WM content does not affect the initial attentional-orienting process but can reduce the need to marshal later control mechanisms for processing relevant items in the visual world.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2017) 29 (12): 2011–2024.
Published: 01 December 2017
FIGURES
| View All (4)
Abstract
View article
PDF
Recent theories assert that visual working memory (WM) relies on the same attentional resources and sensory substrates as visual attention to external stimuli. Behavioral studies have observed competitive tradeoffs between internal (i.e., WM) and external (i.e., visual) attentional demands, and neuroimaging studies have revealed representations of WM content as distributed patterns of activity within the same cortical regions engaged by perception of that content. Although a key function of WM is to protect memoranda from competing input, it remains unknown how neural representations of WM content are impacted by incoming sensory stimuli and concurrent attentional demands. Here, we investigated how neural evidence for WM information is affected when attention is occupied by visual search—at varying levels of difficulty—during the delay interval of a WM match-to-sample task. Behavioral and fMRI analyses suggested that WM maintenance was impacted by the difficulty of a concurrent visual task. Critically, multivariate classification analyses of category-specific ventral visual areas revealed a reduction in decodable WM-related information when attention was diverted to a visual search task, especially when the search was more difficult. This study suggests that the amount of available attention during WM maintenance influences the detection of sensory WM representations.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2017) 29 (1): 137–149.
Published: 01 January 2017
FIGURES
| View All (4)
Abstract
View article
PDF
An influential theory of ACC function argues that this brain region plays a crucial role in the affective evaluation of performance monitoring and control demands. Specifically, control-demanding processes such as response conflict are thought to be registered as aversive signals by ACC, which in turn triggers processing adjustments to support avoidance learning. In support of conflict being treated as an aversive event, recent behavioral studies demonstrated that incongruent (i.e., conflict inducing), relative to congruent, stimuli can speed up subsequent negative, relative to positive, affective picture processing. Here, we used fMRI to investigate directly whether ACC activity in response to negative versus positive pictures is modulated by preceding control demands, consisting of conflict and task-switching conditions. The results show that negative, relative to positive, pictures elicited higher ACC activation after congruent, relative to incongruent, trials, suggesting that ACC's response to negative (positive) pictures was indeed affectively primed by incongruent (congruent) trials. Interestingly, this pattern of results was observed on task repetitions but disappeared on task alternations. This study supports the proposal that conflict induces negative affect and is the first to show that this affective signal is reflected in ACC activation.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2012) 24 (5): 1113–1126.
Published: 01 May 2012
FIGURES
| View All (4)
Abstract
View article
PDF
Attention is attracted exogenously by physically salient stimuli, but this effect can be dampened by endogenous attention settings, a phenomenon called “contingent capture.” Emotionally salient stimuli are also thought to exert a strong exogenous influence on attention, especially in anxious individuals, but whether and how top–down attention can ameliorate bottom–up capture by affective stimuli is currently unknown. Here, we paired a novel spatial cueing task with fMRI to investigate contingent capture as a function of the affective salience of bottom–up cues (face stimuli) and individual differences in trait anxiety. In the absence of top–down cues, exogenous stimuli validly cueing targets facilitated attention in low-anxious participants, regardless of affective salience. However, although high-anxious participants exhibited similar facilitation following neutral exogenous cues, this facilitation was completely absent following affectively negative exogenous cues. Critically, these effects were contingent on endogenous attentional settings, such that explicit top–down cues presented before the appearance of exogenous stimuli removed anxious individuals' sensitivity to affectively salient stimuli. fMRI analyses revealed a network of brain regions underlying this variability in affective contingent capture across individuals, including the fusiform face area (FFA), posterior ventrolateral frontal cortex, and SMA. Importantly, activation in the posterior ventrolateral frontal cortex and the SMA fully mediated the effects observed in FFA, demonstrating a critical role for these frontal regions in mediating attentional orienting and interference resolution processes when engaged by affectively salient stimuli.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2011) 23 (12): 3903–3913.
Published: 01 December 2011
FIGURES
Abstract
View article
PDF
Conflict adaptation—a conflict-triggered improvement in the resolution of conflicting stimulus or response representations—has become a widely used probe of cognitive control processes in both healthy and clinical populations. Previous fMRI studies have localized activation foci associated with conflict resolution to dorsolateral PFC (dlPFC). The traditional group analysis approach employed in these studies highlights regions that are, on average, activated during conflict resolution, but does not necessarily reveal areas mediating individual differences in conflict resolution, because between-subject variance is treated as noise. Here, we employed a complementary approach to elucidate the neural bases of variability in the proficiency of conflict-driven cognitive control. We analyzed two independent fMRI data sets of face–word Stroop tasks by using individual variability in the behavioral expression of conflict adaptation as the metric against which brain activation was regressed while controlling for individual differences in mean RT and Stroop interference. Across the two experiments, a replicable neural substrate of individual variation in conflict adaptation was found in ventrolateral PFC (vlPFC), specifically, in the right inferior frontal gyrus, pars orbitalis (BA 47). Unbiased regression estimates showed that variability in activity in this region accounted for ∼40% of the variance in behavioral expression of conflict adaptation across subjects, thus documenting a heretofore unsuspected key role for vlPFC in mediating conflict-driven adjustments in cognitive control. We speculate that vlPFC plays a primary role in conflict control that is supplemented by dlPFC recruitment under conditions of suboptimal performance.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2007) 19 (6): 945–956.
Published: 01 June 2007
Abstract
View article
PDF
Rejection sensitivity (RS) is the tendency to anxiously expect, readily perceive, and intensely react to rejection. This study used functional magnetic resonance imaging to explore whether individual differences in RS are mediated by differential recruitment of brain regions involved in emotional appraisal and/or cognitive control. High and low RS participants were scanned while viewing either representational paintings depicting themes of rejection and acceptance or nonrepresentational control paintings matched for positive or negative valence, arousal and interest level. Across all participants, rejection versus acceptance images activated regions of the brain involved in processing affective stimuli (posterior cingulate, insula), and cognitive control (dorsal anterior cingulate cortex; medial frontal cortex). Low and high RS individuals' responses to rejection versus acceptance images were not, however, identical. Low RS individuals displayed significantly more activity in left inferior and right dorsal frontal regions, and activity in these areas correlated negatively with participants' self-report distress ratings. In addition, control analyses revealed no effect of viewing negative versus positive images in any of the areas described above, suggesting that the aforementioned activations were involved in rejection-relevant processing rather than processing negatively valenced stimuli per se. Taken together, these findings suggest that responses in regions traditionally implicated in emotional processing and cognitive control are sensitive to rejection stimuli irrespective of RS, but that low RS individuals may activate prefrontal structures to regulate distress associated with viewing such images.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2005) 17 (11): 1774–1784.
Published: 01 November 2005
Abstract
View article
PDF
The negative priming (NP) effect refers to the observed increase in identification time for a current target stimulus or stimulus feature (the “probe”) that has been employed as a distractor stimulus or stimulus feature on the previous trial (the “prime”), representing strong evidence that ignored information is actively processed to a high level by selective attention systems. However, theoretical accounts of NP differ in whether they attribute the effect to processes of selective inhibition or episodic memory retrieval. Here we derived neurophysiological predictions from the rival “selective inhibition” and “episodic retrieval” models of NP, and employed event-related fMRI in a color-naming Stroop task to assess neural responses to probe trials that were subject to either no priming or negative priming. Compared to no-priming probe trials, NP resulted in increased activation of the right dorsolateral prefrontal cortex, in a region which has been closely linked with episodic memory retrieval functions. NP was also accompanied by activation of the right thalamus, particularly the mediodorsal nucleus, which has been implicated in the pathophysiology of schizophrenia, a condition associated with diminished NP effects. Our results support the proposal that ignored stimulus information is fully encoded in memory, and that episodic retrieval, not selective inhibition, of such information affects selective attention performance on subsequent trials.