Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-6 of 6
Tobias Reichenbach
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience 1–18.
Published: 01 November 2024
Abstract
View article
PDF
Oral communication regularly takes place amidst background noise, requiring the ability to selectively attend to a target speech stream. Musical training has been shown to be beneficial for this task. Regarding the underlying neural mechanisms, recent studies showed that the speech envelope is tracked by neural activity in auditory cortex, which plays a role in the neural processing of speech, including speech in noise. The neural tracking occurs predominantly in two frequency bands, the delta and the theta bands. However, much regarding the specifics of these neural responses, as well as their modulation through musical training, still remain unclear. Here, we investigated the delta- and theta-band cortical tracking of the speech envelope of attended and ignored speech using magnetoencephalography (MEG) recordings. We thereby assessed both musicians and nonmusicians to explore potential differences between these groups. The cortical speech tracking was quantified through source-reconstructing the MEG data and subsequently relating the speech envelope in a certain frequency band to the MEG data using linear models. We thereby found the theta-band tracking to be dominated by early responses with comparable magnitudes for attended and ignored speech, whereas the delta band tracking exhibited both earlier and later responses that were modulated by selective attention. Almost no significant differences emerged in the neural responses between musicians and nonmusicians. Our findings show that only the speech tracking in the delta but not in the theta band contributes to selective attention, but that this mechanism is essentially unaffected by musical training.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2024) 36 (3): 475–491.
Published: 01 March 2024
FIGURES
| View All (7)
Abstract
View article
PDF
Most parts of speech are voiced, exhibiting a degree of periodicity with a fundamental frequency and many higher harmonics. Some neural populations respond to this temporal fine structure, in particular at the fundamental frequency. This frequency-following response to speech consists of both subcortical and cortical contributions and can be measured through EEG as well as through magnetoencephalography (MEG), although both differ in the aspects of neural activity that they capture: EEG is sensitive to both radial and tangential sources as well as to deep sources, whereas MEG is more restrained to the measurement of tangential and superficial neural activity. EEG responses to continuous speech have shown an early subcortical contribution, at a latency of around 9 msec, in agreement with MEG measurements in response to short speech tokens, whereas MEG responses to continuous speech have not yet revealed such an early component. Here, we analyze MEG responses to long segments of continuous speech. We find an early subcortical response at latencies of 4–11 msec, followed by later right-lateralized cortical activities at delays of 20–58 msec as well as potential subcortical activities. Our results show that the early subcortical component of the FFR to continuous speech can be measured from MEG in populations of participants and that its latency agrees with that measured with EEG. They furthermore show that the early subcortical component is temporally well separated from later cortical contributions, enabling an independent assessment of both components toward further aspects of speech processing.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2023) 35 (11): 1760–1772.
Published: 01 November 2023
FIGURES
| View All (5)
Abstract
View article
PDF
Syllables are an essential building block of speech. We recently showed that tactile stimuli linked to the perceptual centers of syllables in continuous speech can improve speech comprehension. The rate of syllables lies in the theta frequency range, between 4 and 8 Hz, and the behavioral effect appears linked to multisensory integration in this frequency band. Because this neural activity may be oscillatory, we hypothesized that a behavioral effect may also occur not only while but also after this activity has been evoked or entrained through vibrotactile pulses. Here, we show that audiotactile integration regarding the perception of single syllables, both on the neural and on the behavioral level, is consistent with this hypothesis. We first stimulated participants with a series of vibrotactile pulses and then presented them with a syllable in background noise. We show that, at a delay of 200 msec after the last vibrotactile pulse, audiotactile integration still occurred in the theta band and syllable discrimination was enhanced. Moreover, the dependence of both the neural multisensory integration as well as of the behavioral discrimination on the delay of the audio signal with respect to the last tactile pulse was consistent with a damped oscillation. In addition, the multisensory gain is correlated with the syllable discrimination score. Our results therefore evidence the role of the theta band in audiotactile integration and provide evidence that these effects may involve oscillatory activity that still persists after the tactile stimulation.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2023) 35 (8): 1301–1311.
Published: 01 August 2023
FIGURES
| View All (6)
Abstract
View article
PDF
The envelope of a speech signal is tracked by neural activity in the cerebral cortex. The cortical tracking occurs mainly in two frequency bands, theta (4–8 Hz) and delta (1–4 Hz). Tracking in the faster theta band has been mostly associated with lower-level acoustic processing, such as the parsing of syllables, whereas the slower tracking in the delta band relates to higher-level linguistic information of words and word sequences. However, much regarding the more specific association between cortical tracking and acoustic as well as linguistic processing remains to be uncovered. Here, we recorded EEG responses to both meaningful sentences and random word lists in different levels of signal-to-noise ratios (SNRs) that lead to different levels of speech comprehension as well as listening effort. We then related the neural signals to the acoustic stimuli by computing the phase-locking value (PLV) between the EEG recordings and the speech envelope. We found that the PLV in the delta band increases with increasing SNR for sentences but not for the random word lists, showing that the PLV in this frequency band reflects linguistic information. When attempting to disentangle the effects of SNR, speech comprehension, and listening effort, we observed a trend that the PLV in the delta band might reflect listening effort rather than the other two variables, although the effect was not statistically significant. In summary, our study shows that the PLV in the delta band reflects linguistic information and might be related to listening effort.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2022) 34 (3): 411–424.
Published: 01 February 2022
FIGURES
| View All (7)
Abstract
View article
PDF
Speech and music are spectrotemporally complex acoustic signals that are highly relevant for humans. Both contain a temporal fine structure that is encoded in the neural responses of subcortical and cortical processing centers. The subcortical response to the temporal fine structure of speech has recently been shown to be modulated by selective attention to one of two competing voices. Music similarly often consists of several simultaneous melodic lines, and a listener can selectively attend to a particular one at a time. However, the neural mechanisms that enable such selective attention remain largely enigmatic, not least since most investigations to date have focused on short and simplified musical stimuli. Here, we studied the neural encoding of classical musical pieces in human volunteers, using scalp EEG recordings. We presented volunteers with continuous musical pieces composed of one or two instruments. In the latter case, the participants were asked to selectively attend to one of the two competing instruments and to perform a vibrato identification task. We used linear encoding and decoding models to relate the recorded EEG activity to the stimulus waveform. We show that we can measure neural responses to the temporal fine structure of melodic lines played by one single instrument, at the population level as well as for most individual participants. The neural response peaks at a latency of 7.6 msec and is not measurable past 15 msec. When analyzing the neural responses to the temporal fine structure elicited by competing instruments, we found no evidence of attentional modulation. We observed, however, that low-frequency neural activity exhibited a modulation consistent with the behavioral task at latencies from 100 to 160 msec, in a similar manner to the attentional modulation observed in continuous speech (N100). Our results show that, much like speech, the temporal fine structure of music is tracked by neural activity. In contrast to speech, however, this response appears unaffected by selective attention in the context of our experiment.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2020) 32 (1): 155–166.
Published: 01 January 2020
FIGURES
| View All (5)
Abstract
View article
PDF
Speech comprehension requires rapid online processing of a continuous acoustic signal to extract structure and meaning. Previous studies on sentence comprehension have found neural correlates of the predictability of a word given its context, as well as of the precision of such a prediction. However, they have focused on single sentences and on particular words in those sentences. Moreover, they compared neural responses to words with low and high predictability, as well as with low and high precision. However, in speech comprehension, a listener hears many successive words whose predictability and precision vary over a large range. Here, we show that cortical activity in different frequency bands tracks word surprisal in continuous natural speech and that this tracking is modulated by precision. We obtain these results through quantifying surprisal and precision from naturalistic speech using a deep neural network and through relating these speech features to EEG responses of human volunteers acquired during auditory story comprehension. We find significant cortical tracking of surprisal at low frequencies, including the delta band as well as in the higher frequency beta and gamma bands, and observe that the tracking is modulated by the precision. Our results pave the way to further investigate the neurobiology of natural speech comprehension.