Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Tony W. Wilson
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2019) 31 (9): 1392–1403.
Published: 01 September 2019
FIGURES
| View All (8)
Abstract
View articletitled, Alpha Frequency Entrainment Reduces the Effect of Visual Distractors
View
PDF
for article titled, Alpha Frequency Entrainment Reduces the Effect of Visual Distractors
Numerous studies have linked alpha frequency (∼10 Hz) visual entrainment to the inhibition of incoming visual information. However, although these studies have provided key evidence for the intrinsic sensitivity of the human brain to incoming alpha frequency signals, they have only examined the negative impact of alpha entrainment on target stimuli. Thus, it remains uncertain whether the perception of distracting or nonimperative stimuli can also be affected by alpha frequency entrainment. In the current study, we address this question using an adapted version of the arrow-based Erikson “flanker” paradigm that incorporates stimuli flickering at two distinct frequencies: 10 Hz (alpha) and 30 Hz. By presenting flickering stimuli in the portions of the visual field where the flanking arrows would soon appear, we aimed to determine whether the frequency of visual entrainment (i.e., 10 Hz vs. 30 Hz) significantly interacted with the congruency of the flanking arrows (representing selective attention processing) using behavioral task performance and neural oscillations as the outcome metrics. Twenty-three healthy adult participants underwent magnetoencephalography during performance of the task. Our results indicated a reduced congruency effect (i.e., a smaller difference between congruent and incongruent trials) in the alpha flicker condition, as compared with the 30-Hz flicker condition, which suggests a robust relationship between alpha entrainment and the active inhibition of distractor stimuli appearing in that portion of the visual field. Supporting this, alpha frequency (but not 30 Hz) entrainment responses in the primary visual cortex also covaried significantly with the behavioral congruency effect.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2016) 28 (7): 1039–1051.
Published: 01 July 2016
FIGURES
| View All (6)
Abstract
View articletitled, Cue-related Temporal Factors Modulate Movement-related Beta Oscillatory Activity in the Human Motor Circuit
View
PDF
for article titled, Cue-related Temporal Factors Modulate Movement-related Beta Oscillatory Activity in the Human Motor Circuit
In humans, there is a strong beta (15–30 Hz) event-related desynchronization (ERD) that begins before movement, which has been tentatively linked to motor planning operations. The dynamics of this response are strongly modulated by whether a pending movement is cued and the inherent parameters of the cue. However, previous studies have focused on the information content of cues and not on parameters such as the timing of the cue relative to other events. Variations in such timing are critical, as they directly impact the amount of time that participants have to plan pending movements. In this study, participants performed finger-tapping sequences during magnetoencephalography, and we manipulated the amount of time (i.e., “long” vs. “short”) between the presentation of the to-be-executed sequence and the cue to initiate the sequence. We found that the beta ERD was stronger immediately after the cue to move in the contralateral postcentral gyrus and bilateral parietal cortices during the short compared with long planning time condition. During movement execution, the beta ERD was stronger in the premotor cortex and the SMA in the short relative to long condition. Finally, peak latency in the SMA significantly correlated with RT, such that the closer the peak beta ERD was to the cue to move, the quicker the participant responded. The results of this study establish that peri-movement beta ERD activity across the cortical motor circuit is highly sensitive to cue-related temporal factors, with a direct link to motor performance.