Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-4 of 4
Urs Maurer
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2024) 36 (5): 872–887.
Published: 01 May 2024
FIGURES
| View All (6)
Abstract
View article
PDF
Visual word recognition is commonly rapid and efficient, incorporating top–down predictive processing mechanisms. Neuroimaging studies with face stimuli suggest that repetition suppression (RS) reflects predictive processing at the neural level, as this effect is larger when repetitions are more frequent, that is, more expected. It remains unclear, however, at the temporal level whether and how RS and its modulation by expectation occur in visual word recognition. To address this gap, the present study aimed to investigate the presence and time course of these effects during visual word recognition using EEG. Thirty-six native Cantonese speakers were presented with pairs of Chinese written words and performed a nonlinguistic oddball task. The second word of a pair was either a repetition of the first or a different word (alternation). In repetition blocks, 75% of trials were repetitions and 25% were alternations, whereas the reverse was true in alternation blocks. Topographic analysis of variance of EEG at each time point showed robust RS effects in three time windows (141–227 msec, 242–445 msec, and 467–513 msec) reflecting facilitation of visual word recognition. Importantly, the modulation of RS by expectation was observed at the late rather than early intervals (334–387 msec, 465–550 msec, and 559–632 msec) and more than 100 msec after the first RS effects. In the predictive coding view of RS, only late repetition effects are modulated by expectation, whereas early RS effects may be mediated by lower-level predictions. Taken together, our findings provide the first EEG evidence revealing distinct temporal dynamics of RS effects and repetition probability on RS effects in visual processing of Chinese words.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2014) 26 (11): 2431–2442.
Published: 01 November 2014
FIGURES
| View All (4)
Abstract
View article
PDF
The left-lateralized N170 component of ERPs for words compared with various control stimuli is considered as an electrophysiological manifestation of visual expertise for written words. To understand the information sensitivity of the effect, researchers distinguish between coarse tuning for words (the N170 amplitude difference between words and symbol strings) and fine tuning for words (the N170 amplitude difference between words and consonant strings). Earlier developmental ERP studies demonstrated that the coarse tuning for words occurred early in children (8 years old), whereas the fine tuning for words emerged much later (10 years old). Given that there are large individual differences in reading ability in young children, these tuning effects may emerge earlier than expected in some children. This study measured N170 responses to words and control stimuli in a large group of 7-year-olds that varied widely in reading ability. In both low and high reading ability groups, we observed the coarse neural tuning for words. More interestingly, we found that a stronger N170 for words than consonant strings emerged in children with high but not low reading ability. Our study demonstrates for the first time that fine neural tuning for orthographic properties of words can be observed in young children with high reading ability, suggesting that the emergent age of this effect is much earlier than previously assumed. The modulation of this effect by reading ability suggests that fine tuning is flexible and highly related to experience. Moreover, we found a correlation between this tuning effect at left occipitotemporal electrodes and children's reading ability, suggesting that the fine tuning might be a biomarker of reading skills at the very beginning of learning to read.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2008) 20 (10): 1878–1891.
Published: 01 October 2008
Abstract
View article
PDF
The N170 component of the event-related potential (ERP) reflects experience-dependent neural changes in several forms of visual expertise, including expertise for visual words. Readers skilled in writing systems that link characters to phonemes (i.e., alphabetic writing) typically produce a left-lateralized N170 to visual word forms. This study examined the N170 in three Japanese scripts that link characters to larger phonological units. Participants were monolingual English speakers (EL1) and native Japanese speakers (JL1) who were also proficient in English. ERPs were collected using a 129-channel array, as participants performed a series of experiments viewing words or novel control stimuli in a repetition detection task. The N170 was strongly left-lateralized for all three Japanese scripts (including logographic Kanji characters) in JL1 participants, but bilateral in EL1 participants viewing these same stimuli. This demonstrates that left-lateralization of the N170 is dependent on specific reading expertise and is not limited to alphabetic scripts. Additional contrasts within the moraic Katakana script revealed equivalent N170 responses in JL1 speakers for familiar Katakana words and for Kanji words transcribed into novel Katakana words, suggesting that the N170 expertise effect is driven by script familiarity rather than familiarity with particular visual word forms. Finally, for English words and novel symbol string stimuli, both EL1 and JL1 subjects produced equivalent responses for the novel symbols, and more left-lateralized N170 responses for the English words, indicating that such effects are not limited to the first language. Taken together, these cross-linguistic results suggest that similar neural processes underlie visual expertise for print in very different writing systems.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2005) 17 (10): 1532–1552.
Published: 01 October 2005
Abstract
View article
PDF
In adult readers, printed words and other letter strings activate specialized visual functions within 200 msec, as evident from neurophysiological recordings of brain activity. These fast, specialized responses to letter strings are thought to develop through plastic changes in the visual system. However, it is unknown whether this specialization emerges only with the onset of word reading, or represents a precursor of literacy. We compared 6-year-old kindergarten children who could not yet read words to adult readers. Both age groups detected immediate repetitions of visually presented words, pseudo-words, symbol strings, and pictures during event-related potential (ERP) mapping. Maps from seven corresponding ERP segments in children and adults were analyzed regarding fast (<250 msec) and slow (>300 msec) specialization for letter strings. Adults reliably differentiated words through increased fast (<150 msec) occipito-temporal N1 activity from symbols. Children showed a later, more mid-occipital N1 with marginal word-symbol differences, which were absent in those children with low letter knowledge. Children with high letter knowledge showed some fast sensitivity to letter strings, which was confined to right occipito-temporal sites, unlike the stronger adult N1 specialization. This suggests that a critical degree of early literacy induces some immature, but fast, specialization for letter strings before word reading becomes possible. Children also differentiated words from symbols in later segments through increased right occipito-temporal negativity for words. This slow specialization for letter strings was not modulated by letter knowledge and was absent in adults, possibly reflecting a visual precursor of literacy due to visual familiarity with letter strings.