Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Uta Wolfensteller
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2023) 35 (2): 158–179.
Published: 01 February 2023
FIGURES
| View All (12)
Abstract
View articletitled, The Role of the Angular Gyrus in Goal-directed Behavior—Two Transcranial Magnetic Stimulation Studies Examining Response Outcome Learning and Outcome Anticipation
View
PDF
for article titled, The Role of the Angular Gyrus in Goal-directed Behavior—Two Transcranial Magnetic Stimulation Studies Examining Response Outcome Learning and Outcome Anticipation
Learning the contingencies between a situational context (S), one's own responses (R), and their outcomes (O) and selecting responses according to their anticipated outcomes is the basis of a goal-directed behavior. Previous imaging studies found the angular gyrus (AG) to be correlated to both the representation of R-O associations and outcome-based response selection. Based on this correlational relationship, we investigated the causal link between AG function and goal-directed behavior in offline and online TMS experiments. To this end, we employed an experimental R-O compatibility paradigm testing outcome anticipation during response selection and S-R-O knowledge to probe S-R-O learning. In Experiment 1, we applied 1-Hz rTMS offline to the AG or the vertex before participants performed the experimental tasks. In Experiment 2, we applied online 10-Hz pulse trains to the AG or used sham stimulation during an early action selection stage in half of the trials. In both experiments, the R-O compatibility effect was unaltered when response selection was outcome-based, suggesting no causal role of the AG in outcome anticipation during response selection. However, in both experiments, groups with AG stimulation showed significantly modulated knowledge of S-R-O associations in a posttest. Additionally, in an explorative analysis, we found an induced R-O compatibility effect later in the experiment when response selection was guided by stimulus–response rules, suggesting reduced selectivity of outcome anticipation. We discuss possible compensatory behavioral and brain mechanism as well as specific TMS-related methodical considerations demonstrating important implications for further studies investigating cognitive function by means of TMS.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2010) 22 (2): 278–291.
Published: 01 February 2010
FIGURES
| View All (6)
Abstract
View articletitled, Bending the Rules: Strategic Behavioral Differences Are Reflected in the Brain
View
PDF
for article titled, Bending the Rules: Strategic Behavioral Differences Are Reflected in the Brain
The implementation of higher-order conditional motor behavior was investigated in the present fMRI study with the objective of answering three questions: (a) what happens in situations where one stimulus dimension alone does not sufficiently determine the correct response?; (b) does the implementation of second-order stimulus–response (S–R) rules on the basis of matching (congruent) or nonmatching (incongruent) S–R associations differ from the implementation of congruent and incongruent first-order S–R rules?; and (c) is the cerebral implementation of second-order rules influenced by interindividual behavioral differences arising from the use of different strategies? The findings indicate that several cortical areas were more strongly engaged for second-order rules. More specifically, rule integration based on a rule match led to enhanced activation in posterior parietal cortex, whereas rule integration based on a rule mismatch was associated with enhanced activation in dorsal premotor cortex and left rostrolateral prefrontal cortex. Interindividual strategy differences were revealed by strikingly different behavioral data patterns: One subgroup of participants displayed strong congruency effects for second-order rules, whereas another subgroup displayed nonsignificant or even reversed congruency effects. Importantly, these strategy differences strongly modulated the cerebral implementation of second-order rules based on a rule mismatch. Together, the present findings reveal differential brain activation patterns for higher-order S–R rules depending on rule congruency and interindividual strategy differences. Moreover, they emphasize the necessity of taking interindividual behavioral differences into account when investigating the cerebral implementation of cognitive processes even in rather simple and well-controlled experimental paradigms.