Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-1 of 1
Valeria Bekhtereva
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2020) 32 (5): 963–976.
Published: 01 May 2020
FIGURES
| View All (4)
Abstract
View article
PDF
We assessed the extent of neural competition for attentional processing resources in early visual cortex between foveally presented task stimuli and peripheral emotional distracter images. Task-relevant and distracting stimuli were shown in rapid serial visual presentation (RSVP) streams to elicit the steady-state visual evoked potential, which serves as an electrophysiological marker of attentional resource allocation in early visual cortex. A task-related RSVP stream of symbolic letters was presented centrally at 15 Hz while distracting RSVP streams were displayed at 4 or 6 Hz in the left and right visual hemifields. These image streams always had neutral content in one visual field and would unpredictably switch from neutral to unpleasant content in the opposite visual field. We found that the steady-state visual evoked potential amplitude was consistently modulated as a function of change in emotional valence in peripheral RSVPs, indicating sensory gain in response to distracting affective content. Importantly, the facilitated processing for emotional content shown in one visual hemifield was not paralleled by any perceptual costs in response to the task-related processing in the center or the neutral image stream in the other visual hemifield. Together, our data provide further evidence for sustained sensory facilitation in favor of emotional distracters. Furthermore, these results are in line with previous reports of a “different hemifield advantage” with low-level visual stimuli and are suggestive of independent processing resources in each cortical hemisphere that operate beyond low-level visual cues, that is, with complex images that impact early stages of visual processing via reentrant feedback loops from higher order processing areas.