Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Vincent A. Billock
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2014) 26 (7): 1587–1599.
Published: 01 July 2014
FIGURES
| View All (6)
Abstract
View article
PDF
Neural information combination problems are ubiquitous in cognitive neuroscience. Two important disciplines, although conceptually similar, take radically different approaches to these problems. Sensory binding theory is largely grounded in synchronization of neurons responding to different aspects of a stimulus, resulting in a coherent percept. Sensory integration focuses more on the influences of the senses on each other and is largely grounded in the study of neurons that respond to more than one sense. It would be desirable to bridge these disciplines, so that insights gleaned from either could be harnessed by the other. To link these two fields, we used a binding-like oscillatory synchronization mechanism to simulate neurons in rattlesnake that are driven by one sense but modulated by another. Mutual excitatory coupling produces synchronized trains of action potentials with enhanced firing rates. The same neural synchronization mechanism models the behavior of a population of cells in cat visual cortex that are modulated by auditory activation. The coupling strength of the synchronizing neurons is crucial to the outcome; a criterion of strong coupling (kept weak enough to avoid seriously distorting action potential amplitude) results in intensity-dependent sensory enhancement—the principle of inverse effectiveness—a key property of sensory integration.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2004) 16 (6): 1036–1048.
Published: 01 July 2004
Abstract
View article
PDF
The putative independence of cortical mechanisms for color, form, and motion raises the binding problem—how is neural activity coordinated to create unified and correctly segmented percepts? Binding could be guided by stimulus-driven correlations between mechanisms, but the nature of these correlations is largely unexplored and no one has (intentionally) studied effects on binding if this joint information is compromised. Here, we develop a theoretical framework which: (1) describes crosstalk-generated correlations between cortical mechanisms for color, achromatic form, and motion, which arise from retinogeniculate encoding; (2) shows how these correlations can facilitate synchronization, segmentation, and binding; (3) provides a basis for understanding perceptual oddities and binding failures that occur for equiluminant and stabilized images. These ideas can be tested by measuring both perceptual events and neural activity while achromatic border contrast or stabilized image velocity is manipulated.